
SCA Specification Version: 4.0.1
01 October 2012

SOFTWARE COMMUNICATIONS ARCHITECTURE
SPECIFICATION

01 October 2012
Version: 4.0.1

Prepared by:

Joint Tactical Networking Center (JTNC)
33000 Nixie Way

San Diego, CA 92147-5110

Statement A - Approved for public release; distribution is unlimited (18 November 2013)

i

SCA Specification Version: 4.0.1
01 October 2012

REVISION SUMMARY

Version Revision Description Date

Next <Draft> Initial Draft Release 30 November 2010

Next <Draft>
1.0.0.1 Applied SCA Next Errata Sheet v1.0 09 March 2011

Next <Draft>
1.0.0.2 Applied SCA Next Errata Sheet v2.0 14 September 2011

Candidate
Release Initial Release 27 December 2011

4.0 ICWG Approved Release 28 February 2012

4.0.1 Incorporated transition to JTNC and applied SCA
4.0 Errata Sheet v1.0 01 October 2012

ii

SCA Specification Version: 4.0.1
01 October 2012

TABLE OF CONTENTS

1 INTRODUCTION ...12
1.1 Scope ..12
1.2 Document Conventions and Terminology ..12

1.2.1 File and Directory Nomenclature ..12
1.2.2 Requirements Language ..12
1.2.3 Core Framework Interface, Component and Operation Identification13

1.3 Document Content ..13
1.4 Normative References ..14
1.5 Informative References ..14

2 OVERVIEW ..15
2.1 Architecture Definition Methodology ...15

2.1.1 Component and Interface Definitions ...15
2.1.2 Component Implementation ..16

2.2 Architecture Overview ...16
2.2.1 System Architecture ..17
2.2.2 Application Architecture ...20

2.2.2.1 Reference Model ..21
2.2.3 Platform Devices and Services Architecture ...22
2.2.4 Core Framework Control Architecture ..22
2.2.5 Structure ..23
2.2.6 Domain Profile ..24

3 SCA PLATFORM INDEPENDENT MODEL (PIM) ..26
3.1 Operating Environment ...26

3.1.1 Operating System ..26
3.1.2 Transfer Mechanism & Services ...26

3.1.2.1 Log Service ..27
3.1.2.2 Event Service and Standard Events ..27

3.1.2.2.1 Event Service ..27
3.1.2.2.2 StandardEvent Module ..27
3.1.2.2.3 Types ...27

3.1.2.2.3.1 StateChangeCategoryType .. 27
3.1.2.2.3.2 StateChangeType .. 27
3.1.2.2.3.3 StateChangeEventType ... 28
3.1.2.2.3.4 SourceCategoryType .. 28

3

SCA Specification Version: 4.0.1
01 October 2012

3.1.2.2.3.5 DomainManagementObjectRemovedEventType .. 28
3.1.2.2.3.6 DomainManagementObjectAddedEventType ... 29

3.1.2.3 Additional Services ..29
3.1.3 Core Framework ..29

3.1.3.1 Common Elements ...30
3.1.3.1.1 Interfaces ...30

3.1.3.1.1.1 ComponentFactory ... 30
3.1.3.1.1.2 ComponentManager .. 32

3.1.3.1.2 Components ..33
3.1.3.1.2.1 ComponentBase .. 33
3.1.3.1.2.2 ComponentFactoryComponent ... 35
3.1.3.1.2.3 ComponentManagerComponent ... 37

3.1.3.1.3 Core Framework Base Types ..38
3.1.3.1.3.1 DataType ... 38
3.1.3.1.3.2 ObjectSequence... 38
3.1.3.1.3.3 FileException .. 38
3.1.3.1.3.4 InvalidFileName ... 38
3.1.3.1.3.5 InvalidObjectReference ... 38
3.1.3.1.3.6 InvalidProfile .. 38
3.1.3.1.3.7 OctetSequence... 39
3.1.3.1.3.8 Properties .. 39
3.1.3.1.3.9 StringSequence ... 39
3.1.3.1.3.10 UnknownProperties ... 39
3.1.3.1.3.11 DeviceAssignmentType .. 39
3.1.3.1.3.12 DeviceAssignmentSequence ... 39
3.1.3.1.3.13 ErrorNumberType. .. 39
3.1.3.1.3.14 PortAccessType .. 40
3.1.3.1.3.15 Ports .. 40
3.1.3.1.3.16 ComponentEnumType .. 40
3.1.3.1.3.17 ComponentType .. 41
3.1.3.1.3.18 Components .. 41
3.1.3.1.3.19 ManagerType .. 41
3.1.3.1.3.20 RegisterError ... 41
3.1.3.1.3.21 UnregisterError ... 41
3.1.3.1.3.22 InvalidState ... 42
3.1.3.1.3.23 ApplicationType ... 42
3.1.3.1.3.24 ApplicationFactoryType ... 42

3.1.3.2 Base Application ..42
3.1.3.2.1 Interfaces ...42

3.1.3.2.1.1 ComponentIdentifier ... 43
3.1.3.2.1.2 PortAccessor ... 43
3.1.3.2.1.3 LifeCycle .. 46
3.1.3.2.1.4 TestableObject .. 48

4

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.2.1.5 PropertySet .. 49
3.1.3.2.1.6 ControllableComponent .. 51
3.1.3.2.1.7 Resource ... 52

3.1.3.2.2 Components ..53
3.1.3.2.2.1 ResourceComponent ... 53
3.1.3.2.2.2 ApplicationResourceComponent ... 54
3.1.3.2.2.3 AssemblyControllerComponent .. 56
3.1.3.2.2.4 ApplicationComponent ... 57
3.1.3.2.2.5 ApplicationComponentFactoryComponent .. 58

3.1.3.3 Framework Control ..58
3.1.3.3.1 Interfaces ...58

3.1.3.3.1.1 Application ... 59
3.1.3.3.1.2 ApplicationDeploymentData ... 63
3.1.3.3.1.3 ApplicationFactory ... 65
3.1.3.3.1.4 DomainManager ... 70
3.1.3.3.1.5 DomainInstallation .. 71
3.1.3.3.1.6 DeviceManager ... 74
3.1.3.3.1.7 DeviceManagerAttributes ... 75
3.1.3.3.1.8 ComponentRegistry .. 76
3.1.3.3.1.9 FullComponentRegistry .. 77
3.1.3.3.1.10 EventChannelRegistry... 78
3.1.3.3.1.11 ManagerRegistry .. 80
3.1.3.3.1.12 FullManagerRegistry .. 82
3.1.3.3.1.13 ManagerRelease .. 83

3.1.3.3.2 Components ..84
3.1.3.3.2.1 AssemblyComponent .. 84
3.1.3.3.2.2 ApplicationManagerComponent ... 85
3.1.3.3.2.3 ApplicationFactoryComponent ... 87
3.1.3.3.2.4 DomainManagerComponent ... 90
3.1.3.3.2.5 DeviceManagerComponent .. 94

3.1.3.4 Base Device ..99
3.1.3.4.1 Interfaces ...99

3.1.3.4.1.1 Device ... 100
3.1.3.4.1.2 ManageableComponent... 103
3.1.3.4.1.3 CapacityManagement .. 103
3.1.3.4.1.4 DeviceAttributes ... 106
3.1.3.4.1.5 ParentDevice ... 108
3.1.3.4.1.6 LoadableDevice .. 108
3.1.3.4.1.7 LoadableObject ... 110
3.1.3.4.1.8 ExecutableDevice.. 112
3.1.3.4.1.9 AggregateDevice ... 115

3.1.3.4.2 Components ..116
3.1.3.4.2.1 ComponentBaseDevice ... 116

5

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.4.2.2 DeviceComponent ... 120
3.1.3.4.2.3 LoadableDeviceComponent .. 120
3.1.3.4.2.4 ExecutableDeviceComponent ... 122
3.1.3.4.2.5 AggregateDeviceComponent .. 123

3.1.3.5 Framework Services ...124
3.1.3.5.1 Interfaces ...124

3.1.3.5.1.1 File .. 124
3.1.3.5.1.2 FileSystem .. 127
3.1.3.5.1.3 FileManager .. 132

3.1.3.5.2 Components ..136
3.1.3.5.2.1 FileComponent .. 136
3.1.3.5.2.2 FileSystemComponent .. 137
3.1.3.5.2.3 FileManagerComponent .. 138
3.1.3.5.2.4 PlatformComponent .. 139
3.1.3.5.2.5 PlatformComponentFactoryComponent .. 140
3.1.3.5.2.6 ServiceComponent .. 140
3.1.3.5.2.7 CF_ServiceComponent ... 142

3.1.3.6 Domain Profile ...142
3.1.3.6.1 Software Package Descriptor (SPD) ..143
3.1.3.6.2 Software Component Descriptor (SCD) ..143
3.1.3.6.3 Software Assembly Descriptor (SAD) ..143
3.1.3.6.4 Properties Descriptor (PRF) ..144
3.1.3.6.5 Device Package Descriptor (DPD) ..144
3.1.3.6.6 Device Configuration Descriptor (DCD) ...144
3.1.3.6.7 Domain Manager Configuration Descriptor (DMD) ...144
3.1.3.6.8 Platform Deployment Descriptor (PDD) ...144
3.1.3.6.9 Application Deployment Descriptor (ADD) ..144

4 CONFORMANCE ..145
4.1 Conformance Criteria ..145

4.1.1 Conformance on the Part of an SCA Product ..145
4.1.2 Conformance on the Part of an SCA OE component ...146

4.2 Sample Conformance Statements ...146

6

SCA Specification Version: 4.0.1
01 October 2012

APPENDIX A: GLOSSARY

APPENDIX B: SCA APPLICATION ENVIRONMENT PROFILES

APPENDIX C: CORE FRAMEWORK INTERFACE DEFINITION LANGUAGE (IDL)

APPENDIX D: PLATFORM SPECIFIC MODEL (PSM) - DOMAIN PROFILE
DESCRIPTOR FILES

APPENDIX E: PLATFORM SPECIFIC MODEL (PSM) – TRANSFER MECHANISMS

AND ENABLING TECHNOLOGIES

APPENDIX F: UNITS OF FUNCTIONALITY AND PROFILES

vii

SCA Specification Version: 4.0.1
01 October 2012

LIST OF FIGURES

Figure 2-1: Relationship between Component Definition and Implementation 16
Figure 2-2: Composition of a SCA System .. 17
Figure 2-3: SCA Component Hierarchy ... 19
Figure 2-4: Application Use of OE .. 21
Figure 2-5: Conceptual Model of Resources .. 22
Figure 2-6: SCA Creation and Management Hierarchy .. 24
Figure 2-7: Relationship of Domain Profile Descriptor File Types ... 25
Figure 3-1: Notional Relationship of OE and Application to an SCA AEP 26
Figure 3-2: Core Framework IDL Relationships .. 30
Figure 3-3: ComponentFactory Interface UML ... 31
Figure 3-4: ComponentManager Interface UML ... 32
Figure 3-5: ComponentBase UML ... 34
Figure 3-6: ComponentFactoryComponent UML .. 36
Figure 3-7: ComponentManagerComponent UML .. 37
Figure 3-8: ComponentIdentifier Interface UML ... 43
Figure 3-9: PortAccessor Interface UML ... 44
Figure 3-10: LifeCycle Interface UML ... 47
Figure 3-11: TestableObject Interface UML .. 48
Figure 3-12: PropertySet Interface UML ... 49
Figure 3-13: ControllableComponent Interface UML ... 51
Figure 3-14: Resource Interface UML ... 53
Figure 3-15: ResourceComponent UML .. 54
Figure 3-16: ApplicationResourceComponent UML ... 55
Figure 3-17: AssemblyControllerComponent UML .. 56
Figure 3-18: Application Component UML ... 57
Figure 3-19: ApplicationComponentFactoryComponent UML.. 58
Figure 3-20: Application Interface UML .. 59
Figure 3-21: Application Behavior ... 61
Figure 3-22: ApplicationDeploymentData Interface UML ... 63
Figure 3-23: ApplicationFactory Interface UML ... 65
Figure 3-24: DomainManager Interface UML ... 70
Figure 3-25: DomainInstallation Interface UML ... 72
Figure 3-26: DeviceManager Interface UML ... 75
Figure 3-27: DeviceManagerAttributes Interface UML ... 76
Figure 3-28: ComponentRegistry Interface UML ... 77

8

SCA Specification Version: 4.0.1
01 October 2012

Figure 3-29: FullComponentRegistry Interface UML .. 78
Figure 3-30: EventChannelRegistry Interface UML .. 79
Figure 3-31: ManagerRegistry Interface UML .. 81
Figure 3-32: FullManagerRegistry Interface UML .. 82
Figure 3-33: ManagerRelease Interface UML ... 83
Figure 3-34: AssemblyComponent UML ... 84
Figure 3-35: ApplicationManagerComponent UML .. 86
Figure 3-36: ApplicationFactoryComponent UML .. 88
Figure 3-37: ApplicationFactory Application Creation Behavior .. 90
Figure 3-38: DomainManagerComponent UML.. 91
Figure 3-39: DeviceManagerComponent UML ... 95
Figure 3-40: Device Manager Startup Scenario ... 99
Figure 3-41: Device Interface UML ... 100
Figure 3-42: Release Child Device Scenario .. 101
Figure 3-43: Release Parent Device Scenario ... 102
Figure 3-44: ManageableComponent Interface UML .. 103
Figure 3-45: CapacityManagement Interface UML ... 104
Figure 3-46: State Transition Diagram for allocateCapacity and deallocateCapacity 106
Figure 3-47: DeviceAttributes Interface UML .. 107
Figure 3-48: ParentDevice Interface UML .. 108
Figure 3-49: LoadableDevice Interface UML .. 109
Figure 3-50: LoadableObject Interface UML ... 110
Figure 3-51: ExecutableDevice Interface UML .. 112
Figure 3-52: AggregateDevice Interface UML ... 115
Figure 3-53: ComponentBaseDevice UML .. 117
Figure 3-54: State Transition Diagram for adminState ... 119
Figure 3-55: DeviceComponent UML ... 120
Figure 3-56: LoadableDeviceComponent UML ... 121
Figure 3-57: ExecutableDeviceComponent UML .. 122
Figure 3-58: AggregateDeviceComponent UML ... 123
Figure 3-59: File Interface UML .. 124
Figure 3-60: FileSystem Interface UML ... 127
Figure 3-61: FileManager Interface UML ... 133
Figure 3-62: FileComponent UML ... 136
Figure 3-63: FileSystemComponent UML ... 137
Figure 3-64: FileManagerComponent UML... 138
Figure 3-65: PlatformComponent UML ... 139
Figure 3-66: PlatformComponentFactoryComponent UML .. 140

9

SCA Specification Version: 4.0.1
01 October 2012

Figure 3-67: ServiceComponent UML ... 141
Figure 3-68: CF_ServiceComponent UML .. 142
Figure 3-69: Relationship of Domain Profile Descriptor File Types... 143

1

SCA Specification Version: 4.0.1
01 October 2012

FOREWORD
Introduction. The Software Communications Architecture (SCA) is published by the Joint
Tactical Networking Center (JTNC). This architecture was developed to assist in the
development of Software Defined Radio (SDR) communication systems, capturing the benefits
of recent technology advances which are expected to greatly enhance interoperability of
communication systems and reduce development and deployment costs. The SCA has been
structured to:

1. provide for portability of applications software between different SCA implementations,
2. leverage commercial standards to reduce development cost,
3. reduce software development time through the ability to reuse design modules,
4. build on evolving commercial frameworks and architectures.

The SCA is deliberately designed to meet commercial application requirements as well as those
of military applications. Since the SCA is intended to become a self-sustaining standard, a wide
cross-section of industry has been invited to participate in the development and validation of the
SCA. The SCA is not a system specification but an implementation independent set of rules that
constrain the design of systems to achieve the objectives listed above.
Core Framework. The Core Framework (CF) defines the essential "core" set of open software
interfaces and profiles that provide for the deployment, management, interconnection, and
intercommunication of software application components in an embedded, distributed-computing
communication system. In this sense, all interfaces defined in the SCA are part of the CF.

1

SCA Specification Version: 4.0.1
01 October 2012

1 INTRODUCTION
The SCA establishes an implementation-independent framework with baseline requirements for
the development of software for SDRs. The SCA is an architectural framework that was created
to maximize portability, configurability of the software (including changing waveforms), and
component interoperability while still allowing the flexibility to address domain specific
requirements and restrictions. Constraints on software development imposed by the framework
are on the interfaces and the structure of the software and not on the implementation of the
functions that are performed. The framework places an emphasis on areas where reusability is
affected and allows implementation unique requirements to determine a specific application of
the architecture.

1.1 SCOPE
This document together with its appendices as specified in the Table of Contents provides a
complete definition of the SCA.
The goal of this specification is to provide for the deployment, management, interconnection,
and intercommunication of software components in embedded, distributed-computing
communication systems.

1.2 DOCUMENT CONVENTIONS AND TERMINOLOGY
1.2.1 File and Directory Nomenclature
The terms "file" and "filename" as used in the SCA, refer to both a "plain file" (equivalent to a
POSIX "regular file") and a directory. An explicit reference is made within the text when
referring to only one of these.
Pathnames are used in accordance with the POSIX specification definition and may reference
either a plain file or a directory. An "absolute pathname" is a pathname which starts with a "/"
(forward slash) character - a "relative pathname" does not have the leading "/" character. A "path
prefix" is a pathname which refers to a directory and thus does not include the name of a plain
file.

1.2.2 Requirements Language
The word "shall" is used to indicate absolute requirements of this specification which must be
strictly followed in order to achieve compliance. No deviations are permitted.
The phrase "shall not" is used to indicate a strict and absolute prohibition of this specification.
The word "should" is used to indicate a recommended course of action among several possible
choices, without mentioning or excluding others. "Should not" is used to discourage a course of
action without prohibiting it.
The word "may" is used to indicate an optional item or allowable course of action within the
scope of the specification. A product which chooses not to implement the indicated item must be
able to interoperate with one that does without impairment of required behavior.
The word "is" (or equivalently "are") used in conjunction with the association of a value to a data
type indicates a required value or condition when multiple values or conditions are possible.

12

SCA Specification Version: 4.0.1
01 October 2012

1.2.3 Core Framework Interface, Component and Operation Identification
References to interface names, their operations and defined XML elements/attributes within this
specification are presented in italicized text. All interface names are capitalized. Interface
attributes, operation parameters, and components are presented in plain text. "CF" precedes
references to Core Framework Base Types (3.1.3.1.3)

1.3 DOCUMENT CONTENT
The Foreword and Section 1, Introduction, of this document provide an introduction to this
specification and identifies the definitions and rules for its usage.
Section 2, Overview, provides an overview of the SCA as well as a description of the interfaces
and behaviors prescribed by the specification.
Section 3, SCA Platform Independent Model (PIM), provides the detailed description of the
architecture framework and the specification requirements.
Section 1,

13

SCA Specification Version: 4.0.1
01 October 2012

Conformance, defines the authorities, requirements and criteria for product certification in
accordance with this specification.
Appendix A: Glossary, contains a glossary of terms and acronyms used in this specification.
Appendix B: SCA Application Environment Profiles, provides the specific requirements for
the SCA Application Environment Profiles (AEP) required as part of compliance to this
specification.
Appendix C: Core Framework Interface Definition Language (IDL), contains the IDL code
used to define the interfaces required by this specification.
Appendix D: Platform Specific Model (PSM) - Domain Profile Descriptor Files, provides a
mapping of the SCA PIM to specific descriptor file representations as part of compliance to this
specification.
Appendix E: Platform Specific Model (PSM) – Transfer Mechanisms and Enabling
Technologies, provides a mapping of the SCA PIM to specific platform transports and
technologies as part of compliance to this specification.
Appendix F: Units of Functionality and Profiles, defines Units of Functionality (UOFs) and
Profiles used to achieve scalable levels of conformance with this specification

1.4 NORMATIVE REFERENCES
The following documents contain provisions or requirements which by reference constitute
requirements of this specification. Applicable versions are as stated.
[1] OMG Lightweight Log Service Specification, Version 1.1 formal/05-02-02, February

2005.
[2] OMG Event Service Specification, Version 1.2 formal/04-10-02, October 2004.
[3] SOFTWARE COMMUNICATIONS ARCHITECTURE SPECIFICATION, Version

2.2.2, 15 May 2006

1.5 INFORMATIVE REFERENCES
The following is a list of documents referenced within this specification or used as reference or
guidance material in its development.
[34] OMG Unified Modeling LanguageTM (OMG UML), Infrastructure, Version 2.4.1

formal/2011-08-05, August 2011.
[45] OMG Unified Modeling LanguageTM (OMG UML), Superstructure, Version 2.4.1

formal/2011-08-06, August 2011.
[56] Common Object Request Broker Architecture (CORBA) Specification, Version 3.1.1

Part 1: CORBA Interfaces, Version 3.2 formal/2011-11-01, November 2011.
[67] Extensible Markup Language (XML) 1.1 (Second Edition), W3C Recommendation, 16

August 2006.
[78] Information technology — Portable Operating System Interface (POSIX®) Base

Specifications, Issue 7, ISO/IEC/IEEE 9945:2009, 15 September 2009.
[89] E. Gamma, et al., Design Patterns: Elements of Reusable Object-Oriented Software.

Boston, MA: Addison-Wesley, 1994.

Formatted: Indent: Left: 0.07", Hanging:
0.5"

14

glbick
Comment on Text
Add SCA V2.2.2 Reference

SCA Specification Version: 4.0.1
01 October 2012

2 OVERVIEW
This section presents an architectural overview of the SCA which defines the fundamental
organization of the components that compose this specification. A high-level description of the
interfaces and components, their responsibilities, as well as their relationship to each other and
the environment are also provided. Technical details and specific requirements of the
architecture and individual components are contained in section 3.
The goal of this specification is to provide for the deployment, management, interconnection,
and intercommunication of software components in embedded, distributed-computing
communication systems. This specification is targeted towards facilitating the development of
SDRs with the additional goals of maximizing software application portability, reusability, and
scalability through the use of commercial protocols and products.
Although there are many definitions of a SDR, it is in essence a radio or communication system
whose output signal is determined by software. In this sense, the output is entirely
reconfigurable at any given time, within the limits of the radio or system hardware capabilities
(e.g. processing elements, power amplifiers, antennas, etc.) merely by loading new software as
required by the user. Since this software determines the output signal of the system, it is
typically referred to as "waveform software" or simply as the "waveform" itself. This ability to
add, remove, or modify the output of the system through reconfigurable and re-deployable
software, leads to communication systems capable of multiple mode operation (including
variable signal formatting, data rates, and bandwidths) within a single hardware configuration.
Simultaneous multi-mode operation is possible when a multi-channel configuration is available.

2.1 ARCHITECTURE DEFINITION METHODOLOGY
The architecture has been developed using an object-oriented approach including current best
practices from software component models and software design patterns. Unless stated, no
explicit grouping or separation of interfaces is required within an implementation. The interface
definitions and required behaviors that follow in section 3, define the responsibilities, roles, and
relationships of their component realizations.
The specification uses the Unified Modeling Language (UML) [34], [45], defined by the
Object Management Group (OMG), to graphically represent interfaces, components,
operational scenarios, use cases, and sequence diagrams; the OMG defined Interface
Definition Language (IDL) [56] to provide the textual representation of the interfaces (see
Appendix E-3 for the mapping); and eXtensible Markup Language (XML) [67] is used to
create the SCA Domain Profile elements which identify the capabilities, properties, inter-
dependencies, and location of the hardware devices and software components that make up an
SCA-compliant system.
IDL fragments appear in section 3 to illustrate interfaces but the IDL in Appendix C takes
precedence. The terms "Domain Profile" and "profile" are used to refer to either the raw XML
format of these files as well as these same files in a parsed format. References to a specific
Domain Profile file (e.g. Software Assembly Descriptor (SAD), Device Configuration Descriptor
(DCD)) refer to the raw XML format per the definitions in section 3.1.3.6.

2.1.1 Component and Interface Definitions
The SCA specifies requirements using both interface and component definitions. An interface
definition includes the formal operation signatures and associated behaviors.

15

SCA Specification Version: 4.0.1
01 October 2012

A component is "an autonomous unit within a system or subsystem" which has the following
characteristics:

• Provides one or more Interfaces which users may access
• Hides its internals and makes them inaccessible other than as provided by its Interfaces.

The component definitions reference interface definitions (which may not be component-unique)
and specify any required behaviors, constraints or associations that must be adhered to when
their corresponding SCA products are built.
Within this specification components are defined as stereotypes that represent the bridge between
the interface definitions and the products that will be built in accordance with the SCA.

2.1.2 Component Implementation
Component implementations must realize a component definition and satisfy all of its aggregated
requirements as shown in Figure 2-1. The term "component" in this document will alternatively
refer to a component definition or a concrete implementation depending on the context. Where
the distinction is not obvious, the text will append "definition" or "implementation" as a
modifier.

SCA Specification

Interface Definitions
(interface signature and behavior

requirements)

Reference(s)

SCA-Conforming Product

Component
Implementations

Component Definitions
(component relationships and

behavioral requirements)

Complies
with

Figure 2-1: Relationship between Component Definition and Implementation

2.2 ARCHITECTURE OVERVIEW
Since the functionality of software itself is virtually limitless, there is a large dependency placed
on the ability to select and configure the appropriate hardware to support the software available
or required for a specific system. The selection of hardware is not restricted to the input/output
(I/O) devices typically associated with communication systems (analog-to-digital converters,

16

SCA Specification Version: 4.0.1

01 October 2012
power amplifiers, etc.). It is dependent on the type and capabilities of the processing elements
(General Purpose Processors (GPP), Digital Signal Processors (DSP), Field-Programmable Gate
Arrays (FPGA), etc.) that are required to be present, since typically the software required to
generate a given output signal will consist of many components of different types based on
performance requirements. From an illustrative view, this results in a system that is represented
by a variable collection of hardware elements which need to be connected together to form
communication pathways based on the specific software loaded onto the system. The role of the
SCA is then to provide a common infrastructure for managing the software and hardware
elements present in a system and ensuring that their requirements and capabilities are
commensurate. The SCA accomplishes this function by defining a set of interfaces that isolate
the system applications from the underlying hardware. This set of interfaces is referred to as the
Core Framework of the SCA.
Additionally, the SCA provides the infrastructure and support elements needed to ensure that
once software components are deployed on a system, they are able to execute and communicate
with the other hardware and software elements present in the system.

2.2.1 System Architecture
An SCA-based system consists of an Operating Environment (OE) and one or more Applications
as shown in Figure 2-2.

Composition of Radio System

Operating Environment
Platform Devices and Services

Audio Device Modem Device Ethernet Device

SCA Core Framework Control
Domain Manager Other Components

Waveform
Waveform
Component #1

Waveform
Component #2

Waveform
Component #n

Figure 2-2: Composition of a SCA System

The SCA differentiates between application, i.e. waveform, software that manipulates input data
and determines the output of the system and OE software that provides the capabilities to host
waveforms and allow them to access system resources. The software components that provide
access to the system hardware resources are referred to as SCA devices, which implement the
Base Device Interfaces. Non-hardware (software-only) components provided by the system for
use by multiple applications are generically referred to as services; however the SCA does not
specify an interface for these components.

17

SCA Specification Version: 4.0.1

01 October 2012
The SCA standardizes a collection of component definitions, but does not place implementation
requirements (e.g. transport mechanisms) on the realized software. A notional representation of
the hierarchy of the significant SCA components is shown in Figure 2-3.

18

SCA Specification Version: 4.0.1
01 October 2012

cmp SCA Component Hierarchy

Dev iceManagerComponent

Realizes

ComponentBase

DomainManagerComponent

ApplicationFactoryComponent ComponentFactoryComponent

PlatformComponent

ApplicationManagerComponent ApplicationComponentFactoryComponent PlatformComponentFactoryComponent

Realizes
ComponentBase

ComponentBaseDev ice

AssemblyComponent ApplicationComponent ResourceComponent Serv iceComponent

Dev iceComponent

ApplicationResourceComponent CF_Serv iceComponent

Realizes
ComponentBase

LoadableDev iceComponent

AssemblyControllerComponent ComponentBase

ExecutableDev iceComponent

Figure 2-3: SCA Component Hierarchy

19

SCA Specification Version: 4.0.1
01 October 2012

The OE provides the capability to manage and execute SCA components and consists of the
Operating System, Transfer Mechanism, Core Framework Control and Platform Devices and
Services.
The SCA includes real-time embedded operating system (RTOS) functions that provide multi-
threaded support for all software executing on the system, including applications, devices, and
services.
The SCA leverages transfer mechanisms to provide standardized client/server operations.
Client/server communications may be co-located or distributed across different processors. The
transfer mechanism structure may be comprised of object request semantics, transfer and
message syntax, and transports.
The following sections describe the architectural structure of the constituent portions of an SCA-
based system with the exception of the Operating System and Transfer Mechanism whose
architecture is not specified by the SCA.

2.2.2 Application Architecture
SCA Applications (typically waveforms) contain the following components:
Base Application Components: ResourceComponent,
ApplicationComponentFactoryComponent (optional), ApplicationResourceComponent and
AssemblyControllerComponent, which utilize the Base Application Components and provide
management of application software.
Application components realize the Resource and ComponentFactory interfaces that are
described below:
Base Application Interfaces: ComponentIdentifier, ControllableComponent, PortAccessor,
LifeCycle, Resource, TestableObject, and PropertySet.
Common Interfaces: ComponentFactory.
The Resource interface provides an API for the control and configuration of software
components. Application developers may extend these capabilities by creating specialized
Resource interfaces for the application. At a minimum, the extension inherits the Resource
interface. The design of a resource's internal functionality is not dictated by the SCA and is left
to the application developer.
Applications interface with the other components of an SCA-based system as presented in Figure
2-4. An application consists of multiple software components, e.g.
ApplicationResourceComponents, which are loaded onto the appropriate processing resource.
These components are managed by the Framework Control Components.
ApplicationResourceComponents communicate with each other or with the services and devices
provided by the system via extensions of the PortAccessor interface. It is intended that the APIs
used by Platform Devices and Service Components be standardized for a given system or domain
so that all communications to and from the application are uniform across multiple systems.
However, the standardization of these interfaces is outside the scope of this specification since
they are system and domain specific.
An application may access OS functionality but is restricted to the operations enumerated in the
Appendix B which is a subset of the Portable Operating System Interface (POSIX) specification
[7]. The specification contains multiple POSIX profiles to allow an implementation to tailor a
product to a minimal set of POSIX features.

20

SCA Specification Version: 4.0.1
01 October 2012

API

API

API

Platform Device
Component

ApplicationResource
Component

ApplicationResource
Component

Service
Component

Transfer Mechanism
CFCC AEP

Transfer Mechanism
CFCC

Operating System

AEP

Transfer Mechanism
CFCC

Legend
ApplicationResourceComponent……………...
System Component……………………………....
Core Framework
Control Components (CFCC)….………...…....
Transfer Mechanism……….…..………………...
SCA Application Environment Profile (AEP)…

Figure 2-4: Application Use of OE

2.2.2.1 Reference Model

All applications are comprised of resources and use devices. Specific resources and devices can
be identified corresponding to their functional entities but that mapping is not identified or
required by this specification.
Figure 2-5 shows example inheritance hierarchies for a Resource. As illustrated, the developer
can determine which optional interfaces are required for a specific component, denoted by the
comment tag over the association line (e.g. CONNECTABLE) in the UML diagram. Each
comment tag corresponds to a Unit of Functionality defined in Appendix F. The operations and
attributes provided by the LifeCycle, TestableObject, PortAccessor, ComponentIdentifier,
ControllableComponent and PropertySet interfaces establish a common approach for interfacing
with a resource in an SCA environment. The PortAccessor interface is used for pushing or
pulling messages between resources and devices. A resource may consist of zero or more input
and output message ports. Figure 2-5 also shows examples of more specialized resources that
could be realized to provide implementation specific functionality (Note: the specialized
resources shown represent generic examples).

21

SCA Specification Version: 4.0.1
01 October 2012

class Conceptual Model of Resources

«interface»
ComponentIdentifier

+ identifier :string

«interface»
LifeCycle

+ initialize() :void
+ releaseObject() :void

«interface»
ControllableComponent

+ started :boolean

+ start() :void
+ stop() :void

«interface»
PropertySet

+ configure(Properties) :void
+ query(Properties*) :void

«interface»
PortAccessor

INT ERROGABLE

CONT ROLLABLE

CONFIGURABLE

«interface»
TestableObj ect

+ connectUsesPorts(Connections) :void
+ disconnectPorts(Disconnections) :void
+ getProvidesPorts(Connections*) :void

+ runT est(unsigned long, Properties*) :void

CONNECT ABLE T EST ABLE

«interface»
Resource

«interface»
Netw orkResource

Figure 2-5: Conceptual Model of Resources

2.2.3 Platform Devices and Services Architecture
Platform devices and services provide device or service specific functionality in support of
applications by way of the following components:
Base Device Components: DeviceComponent, LoadableDeviceComponent,
ExecutableDeviceComponent, AggregateDeviceComponent and ComponentBaseDevice, which
provide management and control of hardware devices within the system.
Framework Services Components: PlatformComponentFactoryComponent,
ServiceComponent or CF_ServiceComponent which provides additional support functions and
services.
These components realize interfaces that are described below:
Base Device Interfaces: CapacityManagement, DeviceAttributes, Device,
ManageableComponent, LoadableDevice, LoadableObject, ExecutableDevice,
AggregateDevice, and ParentDevice.
Base Application Interfaces: ComponentIdentifier, ControllableComponent, PortAccessor,
LifeCycle, Resource, TestableObject and PropertySet.

2.2.4 Core Framework Control Architecture
The Core Framework is the essential set of open application-layer interfaces and services which
provide an abstraction of the underlying system software and hardware. Core Framework
Control provides management of domains consisting of the following SCA defined components:

22

SCA Specification Version: 4.0.1
01 October 2012

Framework Control Components: AssemblyComponent, ApplicationManagerComponent,
ApplicationFactoryComponent, DomainManagerComponent, and DeviceManagerComponent,
which control the instantiation, management, and destruction/removal of software from the
system.
Framework Services Components: FileComponent, FileSystemComponent and
FileManagerComponent, which provide additional support functions and services.
Common Components: ComponentFactoryComponent and ComponentManagerComponent.
These components realize interfaces described below:
Framework Control Interfaces: Application, ApplicationDeploymentData, ApplicationFactory,
ComponentRegistry, DomainInstallation, DomainManager, DeviceManagerAttributes,
EventChannelRegistry, FullComponentRegistry, ManagerRegistry, ManagerRelease,
FullManagerRegistry, and DeviceManager.
Framework Services Interfaces: File, FileSystem and FileManager.
Base Application Interfaces: ComponentIdentifier, ControllableComponent, PortAccessor,
LifeCycle, TestableObject and PropertySet.
Common Interfaces: ComponentFactory and ComponentManager.

2.2.5 Structure
All SCA compliant systems require certain software components to be present in order to
provide for component deployment, management, and interconnection. These include a
DomainManagerComponent (including support for the ApplicationFactoryComponent and
ApplicationManagerComponent), DeviceManagerComponent, FileManagerComponent, and
FileSystemComponent. The management hierarchy of these entities is depicted in Figure 2-6.
An SCA compliant system includes a domain manager which contains knowledge of all existing
implementations installed or loaded onto the system including references to all file systems
(through the file manager), device managers, application factories and applications (and their
resources).
Each device manager, in turn, contains complete knowledge of a set of devices and/or services.
A system may have multiple device managers but each device manager registers with the domain
manager to assure that the domain manager has complete cognizance of the system. A device
manager may have an associated file system (or file manager to support multiple file systems) as
indicated in the Figure 2-6.
An application manager, created by the ApplicationFactoryComponent, provides access to a
specific application that is instantiated on the system.

23

SCA Specification Version: 4.0.1
01 October 2012

domain manager

device manager

file
manager

application
factory

application
manager

component

factory

file
system

component

factory resource

device service file

Creation
 Management, Destruction
 Creates and Manages

Figure 2-6: SCA Creation and Management Hierarchy

2.2.6 Domain Profile
The SCA defines a set of files referred to as the Domain Profile, depicted in Figure 2-7, which
describes the characteristics and attributes of the services, devices, and applications installed on
the system. The Domain Profile is a hierarchical collection of descriptor files that define the
properties of all software components in the system.
Each software element in the system is described by a Software Package Descriptor (SPD) and a
Software Component Descriptor (SCD) file. An SPD file contains the details of a software
module that are to be loaded and executed. The SPD provides identification of the software (title,
author, etc.) as well as the name of the code file (executable, library or driver), implementation
details (language, OS, etc.), dependencies to other SPDs and devices, and references to
Properties Descriptor (PRF) and SCD files. The SCD defines interfaces supported and used by a
specific component.
The SAD file describes the composition and configuration of an application. The SAD references
all SPDs and SADs needed for this application, defines required connections between application
components (connection of provides and uses ports / interfaces), defines needed connections to
devices and services, provides additional information on how to locate the needed devices and
services, defines any co-location (deployment) dependencies, and identifies component(s)
within the application as the assembly controller. A SAD may also reference an Application
Deployment Descriptor (ADD) that defines the channel deployment precedence order for the
application.

24

SCA Specification Version: 4.0.1
01 October 2012

Properties Descriptor

Platform Deployment Descriptor

The Device Configuration Descriptor (DCD) identifies all devices and services associated with a
device manager, by referencing its associated SPDs. The DCD also defines properties of the
specific device manager, enumerates the needed connections to services (e.g. file systems), and
provides additional information on how to locate the domain manager. A DCD may also contain
a reference to a Device Package Descriptor (DPD) file which provides a detailed description of
the associated hardware device.
The Domain Manager Configuration Descriptor (DMD) provides the location of the SPD file for
a specific domain manager. The DMD also specifies connections to other software components
(e.g. services) which are required by the domain manager. The DMD may also reference a
Platform Deployment Descriptor (PDD) that describes the channels for a platform.
The PRF contains information about the properties applicable to a software package or a device
package. A PRF provides information about the properties of a component such as its default
values or configuration types.

Domain Profile

0..n 1 0..n

Device Configuration Descriptor Domain Manager Configuration Descriptor Software Assembly Descriptor

1..n

{1..n}

0..n

0..n 1 0..n 0..1

Device Package Descriptor Software Package Descriptor Application Deployment Descriptor

0..1

Properties Descriptor

0..1

Software Component Descriptor

0..1

0..1
0..1

Properties Descriptor

Figure 2-7: Relationship of Domain Profile Descriptor File Types

25

SCA Specification Version: 4.0.1
01 October 2012

Application Resources

CF Interfaces
CORBA APIs

Core Framework Control,
ORB and Services, Devices, and
CORBA File access

AEP Services

Operating System

3 SCA PLATFORM INDEPENDENT MODEL (PIM)
This section documents a platform independent representation of the SCA. Technology specific
mappings of the SCA PIM are documented in Appendix E. OMG IDL is the standard
representation for the standalone interface definitions within the SCA platform independent
model.

3.1 OPERATING ENVIRONMENT
This section contains the requirements of the operating system, transfer mechanism, and the CF
interfaces and operations that comprise the SCA Operating Environment.

3.1.1 Operating System
The processing environment and the functions performed in the architecture impose differing
constraints on the architecture. Appendix B is defined to support portability of waveforms,
scalability of the architecture, and commercial viability. POSIX specifications are used as a
basis for this profile. The notional relationship of the OE and applications to Appendix B is
depicted in Figure 3-1. SCA451 The OE shall provide the functions and options designated as
mandatory by a profile defined in Appendix B. The OE is not limited to providing the functions
and options designated as mandatory by the profile. OE implementations are not limited to using
the services designated as mandatory by Appendix B.

Application Resources

 CF Interfaces

Core Framework Control,
Services, Devices, and

File access

Transfer

Mechanism
and Services

AEP

Operating System

Figure 3-1: Notional Relationship of OE and Application to an SCA AEP

SCA1 The OE and related file systems shall support a maximum filename length of 40
characters and a maximum pathname length of 1024 characters.
Applications are limited to using the OS services that are designated as mandatory for the profile.
Applications perform file access through the CF (application requirements are covered in section
3.1.3.3.2.1).

3.1.2 Transfer Mechanism & Services
SCA452 The OE shall provide a transfer mechanism that, at a minimum, provides the features
specified in Appendix E for the specific platform technology implemented.

26

SCA Specification Version: 4.0.1
01 October 2012

3.1.2.1 Log Service

An SCA compliant implementation may include a log service. SCA453 The log service shall
conform to the OMG Lightweight Log Service Specification [1].

3.1.2.2 Event Service and Standard Events

3.1.2.2.1 Event Service
SCA2 The OE shall provide an implementation of an Event Service. SCA454 The Event Service
shall implement the PushConsumer and PushSupplier interfaces of the CosEventComm module
as described in OMG Event Service Specification [2] consistent with the IDL found in that
specification.
The Event Service has the capability to create event channels. An event channel allows multiple
suppliers to communicate with multiple consumers asynchronously. An event channel is both a
consumer and a producer of events. For example, event channels may be standard objects and
communication through those channels is accomplished using standard requests. SCA3 The OE
shall provide two standard event channels: Incoming Domain Management and Outgoing
Domain Management. The Incoming Domain Management Channel name is "IDM_Channel".
The Outgoing Domain Management Channel name is "ODM_Channel". The Incoming Domain
Management event channel is used by components within the domain to generate events (e.g.,
device state change event) that are consumed by domain management components (e.g.,
ApplicationFactoryComponent, ApplicationManagerComponent, DomainManagerComponent,
etc.). The Outgoing Domain Management Channel is used by domain clients (e.g., HCI) to
receive events (e.g., additions or removals from the domain) generated from domain
management components (e.g., ApplicationFactoryComponent, ApplicationManagerComponent,
DomainManagerComponent, etc.). Besides these two standard event channels, the OE allows
other event channels to be set up by application developers.

3.1.2.2.2 StandardEvent Module
The StandardEvent module specifies type definitions that are used for passing events from event
producers to event consumers. The IDL for this module is specified in Appendix C of this
specification.
3.1.2.2.3 Types
3.1.2.2.3.1 StateChangeCategoryType
The type StateChangeCategoryType is an enumeration that is utilized in the
StateChangeEventType. It is used to identify the category of state change that has occurred.
enum StateChangeCategoryType
{

ADMINISTRATIVE_STATE_EVENT,
OPERATIONAL_STATE_EVENT,
USAGE_STATE_EVENT

};
3.1.2.2.3.2 StateChangeType
The type StateChangeType is an enumeration that is utilized in the StateChangeEventType. It is
used to identify the specific states of the event source before and after the state change occurred.
enum StateChangeType

27

SCA Specification Version: 4.0.1
01 October 2012

{
LOCKED, /*Administrative State Event */
UNLOCKED, /*Administrative State Event */
SHUTTING_DOWN, /*Administrative State Event */
ENABLED, /*Operational State Event */
DISABLED, /*Operational State Event */
IDLE, /*Usage State Event */
ACTIVE, /*Usage State Event */
BUSY /*Usage State Event */

};
3.1.2.2.3.3 StateChangeEventType
The type StateChangeEventType is a structure used to indicate that the state of the event source
has changed.
struct StateChangeEventType
{

string producerId;
string sourceId;
StateChangeCategoryType stateChangeCategory;
StateChangeType stateChangeFrom;
StateChangeType stateChangeTo;

};
3.1.2.2.3.4 SourceCategoryType
The type SourceCategoryType is an enumeration that is utilized in the
DomainManagementObjectAddedEventType and
DomainManagementObjectRemovedEventType. It is used to identify the type of object that has
been added to or removed from the domain.
enum SourceCategoryType
{

DEVICE_MANAGER,
DEVICE,
APPLICATION_FACTORY,
APPLICATION,
SERVICE

};
3.1.2.2.3.5 DomainManagementObjectRemovedEventType
The type DomainManagementObjectRemovedEventType is a structure used to indicate that an
event source has been removed from the domain.
struct DomainManagementObjectRemovedEventType
{

string producerId;
string sourceId;
string sourceName;
SourceCategoryType sourceCategory;

};

28

SCA Specification Version: 4.0.1
01 October 2012

3.1.2.2.3.6 DomainManagementObjectAddedEventType
The type DomainManagementObjectAddedEventType is a structure used to indicate that an
event source has been added to the domain.
struct DomainManagementObjectAddedEventType
{

string producerId;
string sourceId;
string sourceName;
SourceCategoryType sourceCategory
Object sourceIOR;

};

3.1.2.3 Additional Services

The OE may include services other than those (i.e. log, file system, and event services) defined
within the SCA. Those additional services may be launched by a device manager and managed
by the framework through the CF based interfaces.
Service definitions should consist of APIs, behavior, state, priority and additional information in
order to establish a clear contract between the service provider and user. IDL is the technology
used to represent the service interfaces to foster reuse, extensibility and interoperability among
SCA components.

3.1.3 Core Framework
This section includes a detailed description of the purpose of each CF interface, component, the
purpose of each supported operation within the interface, and interface class diagrams to support
these descriptions. The corresponding IDL for the CF is specified in Appendix C.
Figure 3-2 depicts the key elements of the CF and the UML relationships between those
elements. A DomainManagerComponent manages the software applications, application
factories, hardware devices (represented by software devices) and device managers within the
system. Some software components may directly control the system's internal hardware devices;
these components are logical devices, which implement the Device, LoadableDevice, or
ExecutableDevice interfaces. Other software components have no direct relationship with a
hardware device, but perform application services for the user and may implement the Resource
interface. This interface provides a consistent way of configuring and tearing down these
components. Each resource can potentially communicate with other resources. An application is
a collection of one or more resources which provides a specific service or function that is
managed through the Application interface. The resources of an application are allocated to one
or more hardware devices by the application factory based upon various factors including the
current availability of hardware devices, the behavior rules of a resource, and the loading
requirements of each resource. The resources may then be created by using the
ComponentFactory interface or through the Device, LoadableDevice, or ExecutableDevice
interfaces and connected to other resources, services, or devices resident on the system.

29

SCA Specification Version: 4.0.1
01 October 2012

class Core Framew ork IDL Relationships

«interface»

AggregateDev ice

+compositeDevice

+compositeDevice

«uses»

«interface»

ManageableComponent

«interface»

CapacityManagement

«interface»

Dev iceAttributes

«interface»

LoadableObj ect

«interface»

ParentDev ice

«interface»
File

«interface»
FileSystem

«interface»
Dev ice

«interface»
LoadableDev ice

«interface»

ExecutableDev ice

+fileSys

«interface»
FileManager

«interface»
ComponentIdentifier

«interface»
PropertySet

«interface»

ControllableComponent

«interface»

PortAccessor

«interface»
LifeCycle

«interface»

TestableObj ect

+fileMgr

«interface»
DomainManager

«interface»
Dev iceManager

«interface»
Resource

«interface»
ComponentFactory

«interface»
Ev entChannelRegistry

«interface»
DomainInstallation

«interface»
Dev iceManagerAttributes

«interface»
ManagerRelease

«interface»
ApplicationDeploymentData

«interface»
ComponentRegistry

«interface»
ManagerRegistry

«interface»
Application

«interface»
ApplicationFactory

«interface»
ComponentManager

«interface»

FullComponentRegistry
«interface»

FullManagerRegistry

Figure 3-2: Core Framework IDL Relationships

The file service interfaces (FileManager, FileSystem, and File) are used for installation and
removal of application files, and for loading and unloading application files on the various
processors that the devices execute upon.

3.1.3.1 Common Elements

3.1.3.1.1 Interfaces
The Common Interfaces provide abstractions for common features, constraints and associations
of SCA products that will be utilized by device, service or application developers.
3.1.3.1.1.1 ComponentFactory
3.1.3.1.1.1.1 Description
The ComponentFactory interface provides an optional mechanism for the management (i.e.
creation and tear down) of components. The ComponentFactory interface is designed after the
Factory Design Patterns [98]. The ComponentFactory interface UML is depicted in Figure 3-3.

30

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.1.1.1.2 UML

class ComponentFactory

«interface»
LifeCycle

+ initialize() :void
+ releaseObject() :void

«interface»
ComponentIdentifier

+ identifier :string

INT ERROGABLE

«interface»
ComponentFactory

+ createComponent(string, Properties) :ComponentT ype

Figure 3-3: ComponentFactory Interface UML

3.1.3.1.1.1.3 Types
3.1.3.1.1.1.3.1 CreateComponentFailure
The CreateComponentFailure exception indicates that the createComponent operation failed to
create the component. The error number indicates a CF ErrorNumberType value. The message
is component-dependent, providing additional information describing the reason for the error.
exception CreateComponentFailure { ErrorNumberType errorNumber;
string msg; };
3.1.3.1.1.1.4 Attributes
N/A
3.1.3.1.1.1.5 Operations
3.1.3.1.1.1.5.1 createComponent
3.1.3.1.1.1.5.1.1 Brief Rationale
The createComponent operation provides the capability to create components in the same
process space as the component factory. This behavior is an alternative approach to the
Device::execute operation for creating a component.
3.1.3.1.1.1.5.1.2 Synopsis
ComponentType createComponent (in string componentId, in
Properties qualifiers) raises (CreateComponentFailure);
3.1.3.1.1.1.5.1.3 Behavior
The componentId parameter is the identifier for a component. The qualifiers parameter contains
values used by the component factory in creation of the component. The qualifiers may be used
to identify, for example, specific subtypes of components created by a component factory.

31

SCA Specification Version: 4.0.1
01 October 2012

SCA386 The createComponent operation shall create a component if no component exists for
the given componentId. SCA387 The createComponent operation shall assign the given
componentId to a new component.
3.1.3.1.1.1.5.1.4 Returns
SCA388 The createComponent operation shall return a ComponentType structure that contains a
reference to the created component.
3.1.3.1.1.1.5.1.5 Exceptions/Errors
SCA389 The createComponent operation shall raise the CreateComponentFailure exception
when it cannot create the component or the component already exists.
3.1.3.1.1.2 ComponentManager
3.1.3.1.1.2.1 Description
The ComponentManager interface extends the ComponentFactory interface by adding a
component management capability for created components. The ComponentManager interface
UML is depicted in Figure 3-4.
3.1.3.1.1.2.2 UML

class ComponentManager

«interface»

ComponentFactory

+ createComponent(string, Properties) : ComponentT ype

«interface»
ComponentManager

+ getComponent(string) : ComponentT ype
+ releaseComponent(string) : boolean

Figure 3-4: ComponentManager Interface UML

3.1.3.1.1.2.3 Types
N/A
3.1.3.1.1.2.4 Attributes
N/A
3.1.3.1.1.2.5 Operations
3.1.3.1.1.2.5.1 getComponent
3.1.3.1.1.2.5.1.1 Brief Rationale
The getComponent operation provides the capability to return a reference to a component that
has already been created.
3.1.3.1.1.2.5.1.2 Synopsis

32

SCA Specification Version: 4.0.1
01 October 2012

ComponentType getComponent (in string componentId);
3.1.3.1.1.2.5.1.3 Behavior
The getComponent operation provides the component reference indicated by the input
componentId parameter to requesting clients.
3.1.3.1.1.2.5.1.4 Returns
SCA391 The getComponent operation shall return a structure that contains a reference to the
existing component identified by the componentId parameter.
3.1.3.1.1.2.5.1.5 Exceptions/Errors
SCA392 The getComponent operation shall return a structure with a nil object reference when
the component does not exists.
3.1.3.1.1.2.5.2 releaseComponent
3.1.3.1.1.2.5.2.1 Brief Rationale
There is a client side and server side representation of a component. The releaseComponent
operation provides the mechanism of releasing the component in the component manager on the
server side when all clients are through with a specific component. The client still has to release
its component reference. The releaseComponent operation may be utilized when a component
manager is used outside of an application (e.g. as part of the OE).
3.1.3.1.1.2.5.2.2 Synopsis
boolean releaseComponent (in string componentId);
3.1.3.1.1.2.5.2.3 Behavior
The releaseComponent operation releases the component from the component manager.
3.1.3.1.1.2.5.2.4 Returns
SCA395 The releaseComponent operation shall return TRUE for a successful release, or FALSE
if the release is not successful or an invalid componentId is specified.
3.1.3.1.1.2.5.2.5 Exceptions/Errors
N/A.
3.1.3.1.2 Components
The Common Components provide abstractions for common features, constraints and
associations of SCA products that will be utilized by device, service or application developers.
3.1.3.1.2.1 ComponentBase
3.1.3.1.2.1.1 Description
A ComponentBase is an abstract component that extends the UML component. ComponentBase
provides an abstraction for the core associations and requirements that are used by many of the
SCA components.

33

SCA Specification Version: 4.0.1
01 October 2012

Figure 3-5: ComponentBase UML

3.1.3.1.2.1.2 Associations

• domainProfile: A ComponentBase is associated with a SPD and zero to many other
domain profile files.

• eventChannel: A ComponentBase produces and consumes event messages to and from
event channels.

• targetLog: A ComponentBase produces log messages and sends them to system log(s).
• utilityComponent: A ComponentBase leverages capabilities provided by

ServiceComponent(s).
• property: A ComponentBase configuration is dictated via the categories of configure

properties contained within its domainProfile.
• connectedComponent: A ComponentBase can be connected with and leverage

capabilities provided by other ComponentBase(s).
3.1.3.1.2.1.3 Semantics
SCA420 A ComponentBase shall implement a 'configure' kind of property with a name of
PRODUCER_LOG_LEVEL. The PRODUCER_LOG_LEVEL configure property provides the
ability to filter the log message output of a component. This property may be configured via the
PropertySet interface to output only specific log levels. SCA421 A ComponentBase shall output
only those log records to a log service that correspond to enabled log level values in the
PRODUCER_LOG_LEVEL attribute. Log levels that are not in the
PRODUCER_LOG_LEVEL attribute are disabled. A ComponentBase uses its identifier in the

34

SCA Specification Version: 4.0.1
01 October 2012

producerId field of the log record output to the log service. SCA423 A ComponentBase shall
operate normally in the case where the connections to a log service are nil or an invalid
reference.
The PropertySet configure and query, Testable::runTest, and ControllableComponent::start
operations are not inhibited by the ControllableComponent::stop operation. SCA518 The
releaseObject operation shall disconnect any ports that are still connected.
The CosEventComm module is used by consumers for receiving events and by producers for
generating events. SCA444 A ComponentBase (e.g., ResourceComponent,
DomainManagerComponent, etc.) that consumes events shall implement the
CosEventComm::PushConsumer interface. SCA424 A ComponentBase that produces events
shall implement the CosEventComm::PushSupplier interface and use the
CosEventComm::PushConsumer interface for generating the events. SCA425 A producer
ComponentBase shall not forward or raise any exceptions when the connection to a
CosEventComm::PushConsumer is a nil or invalid reference.
3.1.3.1.2.1.4 Constraints
SCA426 A ComponentBase shall realize the ComponentIdentifier interface.
SCA427 A ComponentBase shall be associated with an SPD file.
SCA428 A ComponentBase shall provide a test implementation for all properties whose kindtype
is test defined in its descriptor files.
SCA429 A ComponentBase shall configure or retrieve query values for all properties whose
kindtype is configure defined in its descriptor file. Configure properties are configure readwrite
and writeonly properties. Query properties are all configure properties whose mode element is
"readwrite" or "readonly" and any allocation properties with an action value of "external".
SCA430 A ComponentBase shall supply ports for all the ports defined in its descriptor file.
SCA432 A ComponentBase shall realize the LifeCycle interface. The LifeCycle operations are
used during deployment and teardown of a component.
SCA433 A ComponentBase shall realize the ControllableComponent interface to provide overall
management control of the component.
3.1.3.1.2.2 ComponentFactoryComponent
3.1.3.1.2.2.1 Description
A ComponentFactoryComponent is an abstract component which provides an optional
mechanism that may be used to create components. The factory mechanism provides client-
server isolation among components and provides a standard mechanism of obtaining a
component without knowing its identity.

35

SCA Specification Version: 4.0.1
01 October 2012

cmp ComponentFactoryComponent

ComponentBase
«interface»

CF::ComponentFactory

+createdComponent *
+ createComponent(string, Properties) :ComponentT ype

«creates»

ComponentFactoryComponent

0..*

0..* *

«creates»

+createdService *

«registers»

+componentRegistry 0..*

Serv iceComponent

«interface»

:ComponentRegistry

Figure 3-6: ComponentFactoryComponent UML

3.1.3.1.2.2.2 Associations

• createdComponent: A ComponentFactoryComponent provides a mechanism to create
new component instances.

• createdService: A ComponentFactoryComponent provides a mechanism to create new
ServiceComponent instances.

• componentRegistry: A ComponentFactoryComponent registers with a
componentRegistry instance upon its creation.

3.1.3.1.2.2.3 Semantics
A ComponentFactoryComponent is used to create a Component. The
ComponentFactoryComponent provides the mechanism of creating separate process threads for
each component created in the component factory. A ComponentFactoryComponent should
contain a collection of configurable initialization and component creation properties.
SCA540 Each ComponentFactoryComponent shall support the mandatory Component Identifier
execute parameter as described in section 3.1.3.3.1.3.5.1, in addition to their user-defined
execute properties in the component's SPD. SCA541 Each executable
ComponentFactoryComponent shall set its identifier attribute using the Component Identifier
execute parameter.
3.1.3.1.2.2.4 Constraints
SCA413 A ComponentFactoryComponent shall realize the ComponentFactory interface.
SCA414 A ComponentFactoryComponent shall fulfill the ComponentBase requirements.

36

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.1.2.3 ComponentManagerComponent
3.1.3.1.2.3.1 Description
A ComponentManagerComponent is an optional mechanism that may be used to create and tear
down components. The ComponentManagerComponent extends the
ComponentFactoryComponent by adding component management capability to the factory.

cmp ComponentManagerComponent

ComponentFactoryComponent

ComponentFactory

«interface»
CF::ComponentManager

+ releaseComponent(string) :boolean
+ getComponent(string) :ComponentT ype

ComponentManagerComponent

*

«manages»

+managedComponent 0..*

ComponentBase

Figure 3-7: ComponentManagerComponent UML

3.1.3.1.2.3.2 Associations

• managedComponent: A ComponentManagerComponent provides a mechanism to
remove and to retrieve ComponentBase(s).

3.1.3.1.2.3.3 Semantics
A ComponentManagerComponent manages a component by its getComponent and
releaseComponent operations. When multiple clients have obtained a reference to the same
component, the ComponentManagerComponent must not release the component until release
requests have been received from all the clients that issued the create request. Application and
waveform developers are not required to use ComponentManagerComponents for their
application definition.
SCA417 The createComponent operation shall set the reference count for the component
indicated by the componentId parameter to one. SCA390 The getComponent operation shall
increment the reference count for the component indicated by the componentId parameter by

37

SCA Specification Version: 4.0.1

01 October 2012
one. SCA393 The releaseComponent operation shall decrement the reference count for the
component indicated by the componentId parameter by one. SCA533 The releaseComponent
operation shall release the component from the OE when the reference count of the component
indicated by the componentId parameter is zero. The reference count is indicates the number of
times that a specific component reference has been given to requesting clients.
3.1.3.1.2.3.4 Constraints
SCA418 A ComponentManagerComponent shall realize the ComponentManager interface.
SCA419 A ComponentManagerComponent shall fulfill the ComponentFactoryComponent
requirements.
3.1.3.1.3 Core Framework Base Types
The CF Base Types are the underlying types used in the CF interfaces.
3.1.3.1.3.1 DataType
This type is an IDL structure, which may be used to hold any basic type or static IDL type. The
id attribute indicates the kind of value and type (e.g., frequency, preset, etc.). The id may be an
UUID string, an integer string, or a name identifier depending on context. The value attribute
may be any static IDL type or basic type.
struct DataType
{

string id;
any value;

};
3.1.3.1.3.2 ObjectSequence
The CF ObjectSequence type defines an unbounded sequence of objects.
typedef sequence <Object> ObjectSequence;

3.1.3.1.3.3 FileException
The CF FileException indicates a file-related error occurred. The error number indicates a CF
ErrorNumberType value. The message provides information describing the error. The message
may be used for logging the error.
exception FileException {ErrorNumberType errorNumber; string
msg; };
3.1.3.1.3.4 InvalidFileName
The CF InvalidFileName exception indicates an invalid file name was passed to a file service
operation. The error number indicates a CF ErrorNumberType value. The message provides
information describing why the file name was invalid.
exception InvalidFileName {ErrorNumberType errorNumber; string
msg; };
3.1.3.1.3.5 InvalidObjectReference
The CF InvalidObjectReference exception indicates an invalid object reference error.
exception InvalidObjectReference {string msg;};
3.1.3.1.3.6 InvalidProfile
The CF InvalidProfile exception indicates an invalid profile error.
exception InvalidProfile{};

38

SCA Specification Version: 4.0.1

3.1.3.1.3.7 OctetSequence
This type is an unbounded sequence of octets.
typedef sequence <octet> OctetSequence;
3.1.3.1.3.8 Properties

01 October 2012

The CF Properties is an IDL unbounded sequence of CF DataType(s), which is used in defining
a sequence of name and value pairs.
typedef sequence <DataType> Properties;
3.1.3.1.3.9 StringSequence
This type defines a sequence of strings.
typedef sequence <string> StringSequence;
3.1.3.1.3.10 UnknownProperties
The CF UnknownProperties exception indicates the unsuccessful retrieval of a component’s
properties. The invalidProperties returned indicate the properties that were unknown.
exception UnknownProperties {Properties invalidProperties; };
3.1.3.1.3.11 DeviceAssignmentType
The CF DeviceAssignmentType defines a structure that associates a component with the device
which the component either uses, is loaded upon or on which it is executed.
struct DeviceAssignmentType
{

string componentId;
string assignedDeviceId;

};
3.1.3.1.3.12 DeviceAssignmentSequence
The IDL sequence, CF DeviceAssignmentSequence, provides an unbounded sequence of CF
DeviceAssignmentTypes.
typedef sequence <DeviceAssignmentType>DeviceAssignmentSequence;
3.1.3.1.3.13 ErrorNumberType.
This enum is used to pass error number information in various exceptions. Those exceptions
starting with "CF_E" map the POSIX definitions (with the "CF_" removed), and is found in
reference [7]. CF_NOTSET is not defined in the POSIX specification. CF_NOTSET is an SCA
specific value that is applicable for any exception when the method specific or standard POSIX
error values are not appropriate.

39

SCA Specification Version: 4.0.1
01 October 2012

enum ErrorNumberType
{
CF_NOTSET, CF_E2BIG, CF_EACCES, CF_EAGAIN, CF_EBADF, CF_EBADMSG,
CF_EBUSY, CF_ECANCELED, CF_ECHILD, CF_EDEADLK, CF_EDOM,
CF_EEXIST, CF_EFAULT, CF_EFBIG, CF_EINPROGRESS,
CF_EINTR,CF_EINVAL, CF_EIO, CF_EISDIR, CF_EMFILE, CF_EMLINK,
CF_EMSGSIZE, CF_ENAMETOOLONG, CF_ENFILE, CF_ENODEV, CF_ENOENT,
CF_ENOEXEC, CF_ENOLCK, CF_ENOMEM, CF_ENOSPC, CF_ENOSYS,
CF_ENOTDIR, CF_ENOTEMPTY, CF_ENOTSUP ,CF_ENOTTY, CF_ENXIO,
CF_EPERM, CF_EPIPE, CF_ERANGE , CF_EROFS, CF_ESPIPE, CF_ESRCH,
CF_ETIMEDOUT ,CF_EXDEV
};
3.1.3.1.3.14 PortAccessType
The PortAccessType structure defines a port. The portName field is the name of the port. The
portReference field is object reference of the port.
struct PortAccessType
{

string portName;
Object portReference;

};
3.1.3.1.3.15 Ports
The Ports type defines a name/value sequence of PortAccessType structures.
typedef sequence <PortAccessType> Ports;
3.1.3.1.3.16 ComponentEnumType
The ComponentEnumType enumeration defines the basic type of a component. The
APPLICATION_COMPONENT field is a component which is launched as part of a Software
Assembly. The DEVICE_COMPONENT field is a ComponentBaseDevice launched by a
DeviceManagerComponent. The CF_SERVICE_COMPONENT field is a
CF_ServiceComponent launched by a DeviceManagerComponent that the framework can
manage through the CF based interfaces. The NON_CF_SERVICE_COMPONENT is a
ServiceComponent launched by a DeviceManagerComponent that could implement possibly any
interface (e.g. Log, FileSystem, etc.). The FRAMEWORK_COMPONENT is a
DeviceManagerComponent, DomainManagerComponent, ApplicationManagerComponent, or
ApplicationFactoryComponent.
enum ComponentEnumType
{
APPLICATION_COMPONENT,

DEVICE_COMPONENT,
CF_SERVICE_COMPONENT,
NON_CF_SERVICE_COMPONENT,
FRAMEWORK_COMPONENT

};

40

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.1.3.17 ComponentType
The ComponentType structure defines the basic elements of a component. The identifier field is
the id of the component as specified through execparams. The softwareProfile field is either the
component's SPD filename or the SPD itself. The type field is the type of component. The
componentObject field is the object reference of the component. The providesPorts field is a
sequence of static ports provided by the component.
struct ComponentType
{

string identifier;
string softwareProfile;
ComponentEnumType type;
Object componentObject;
Ports providesPorts;

};
3.1.3.1.3.18 Components
The Components type defines a sequence of ComponentType structures.
typedef sequence <ComponentType> Components;

3.1.3.1.3.19 ManagerType
The ManagerType structure defines the basic elements of a manager component (e.g.
DeviceManagerComponent). The managerComponent field provides component information
including id, type, object reference, and static provides ports of the manager component. The
registeredComponents field is a sequence of components that have registered with this manager
component. The fileSys field is the file system used by this manager component. The profile
field is either the manager component’s filename (e.g. DCD) or the domain profile file contents
utilized by the manager component.
struct ManagerType
{

ComponentType managerComponent;
Components registeredComponents;
FileSystem fileSys;
string profile;

};
3.1.3.1.3.20 RegisterError
The RegisterError exception indicates that an internal error has occurred to prevent the
ComponentRegistry or ManagerRegistry interface registration operations from successful
completion. The error number indicates a CF ErrorNumberType value. The message is
component-dependent, providing additional information describing the reason for the error.
exception RegisterError { ErrorNumberType errorNumber; string
msg; };
3.1.3.1.3.21 UnregisterError
The UnregisterError exception indicates that an internal error has occurred to prevent the
FullComponentRegistry or FullManagerRegistry interface unregister operations from successful
completion. The error number indicates a CF ErrorNumberType value. The message is
component-dependent, providing additional information describing the reason for the error.

41

SCA Specification Version: 4.0.1
01 October 2012

exception UnregisterError { ErrorNumberType errorNumber; string
msg; };
3.1.3.1.3.22 InvalidState
The InvalidState exception indicates that the device is not capable of executing the requested
behavior due to the device's current state. The message is component-dependent, providing
additional information describing the reason for the error.
exception InvalidState {string msg;};
3.1.3.1.3.23 ApplicationType
The ApplicationType defines the elements of an application. The name field is the user-friendly
name of this application or the application created by this application factory and is identical to
the name passed into the ApplicationFactory::create call. The profile field is either the SAD
filename or the SAD itself which represents this application or the application created by this
ApplicationFactoryComponent. The app field is the reference to the
ApplicationManagerComponent.
struct ApplicationType
{

string name;
string profile;
Application app;

};
3.1.3.1.3.24 ApplicationFactoryType
The ApplicationFactoryType defines the elements of an application factory. The name field is
the name of this application factory and is identical to the softwareassembly element name
attribute of the SAD. The profile field is either the SAD filename or the SAD itself which
represents this application or the application created by this application factory. The appFactory
field is the reference to the ApplicationFactoryComponent.
struct ApplicationFactoryType
{

string name;
string profile;
ApplicationFactory appFactory;

};

3.1.3.2 Base Application

3.1.3.2.1 Interfaces
Base Application Interfaces are defined by the Core Framework requirements and implemented
by application developers; see section 3.1.3.3.2.1 for application requirements.
Base Application Interfaces are implemented using the appropriate Platform Specific interface
definitions presented in Appendix E.

42

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.2.1.1 ComponentIdentifier
3.1.3.2.1.1.1 Description
The ComponentIdentifier interface provides a readonly identifier attribute for a component. The
interface for a ComponentIdentifier is based upon its identifier attribute, which is the instance-
unique identifier for this component.
3.1.3.2.1.1.2 UML

class ComponentIdentifier

«interface»

ComponentIdentifier

+ identifier :string

Figure 3-8: ComponentIdentifier Interface UML

3.1.3.2.1.1.3 Types
N/A.
3.1.3.2.1.1.4 Attributes
3.1.3.2.1.1.4.1 identifier
SCA6 The readonly identifier attribute shall return the instance-unique identifier for a
component.
readonly attribute string identifier;
3.1.3.2.1.1.5 Operations
N/A.
3.1.3.2.1.2 PortAccessor
3.1.3.2.1.2.1 Description
This interface provides operations for managing associations between ports. The PortAccessor
interface UML is depicted in Figure 3-9. An application establishes the operations for
transferring data and control. The application also establishes the meaning of the data and
control values. Examples of how applications may use ports in different ways include: push or
pull, synchronous or asynchronous, mono- or bi-directional, or whether to use flow control (e.g.,
pause, start, and stop).
The nature of PortAccessor fan-in, fan-out, or one-to-one is component dependent. How
components' ports are connected is described in the SAD and the DCD files of the Domain
Profile (3.1.3.6).

43

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.2.1.2.2 UML

class PortAccessor

«interface»
PortAccessor

+ connectUsesPorts(Connections) : void
+ disconnectPorts(Disconnections) : void
+ getProvidesPorts(Connections*) : void

Figure 3-9: PortAccessor Interface UML

3.1.3.2.1.2.3 Types
3.1.3.2.1.2.3.1 ConnectionType
The ConnectionType structure defines a type for information needed to make a connection. The
connectionId field is the id of the connection. The portReference field is the object reference of
the provided port.
struct ConnectionType
{

ConnectionIdType portConnectionId;
Object portReference;

};
3.1.3.2.1.2.3.2 Connections
The Connections type defines a sequence of ConnectionType structures.
typedef sequence <ConnectionType> Connections;

3.1.3.2.1.2.3.3 ConnectionErrorType
The ConnectionErrorType structure identifies a port and associated error code to be provided in
the InvalidPort exception defined in 3.1.3.2.1.2.3.6
struct ConnectionErrorType
{

ConnectionIdType portConnectionId;
unsigned short errorCode;

};
3.1.3.2.1.2.3.4 ConnectionIdType
The ConnectionIdType structure defines a type for information needed to disconnect a
connection. The connectionId field is the id of the connection. The portName field is the name
of the (uses or provides) port.
struct ConnectionIdType
{

string connectionId;
string portName;

};

44

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.2.1.2.3.5 Disconnections
The Disconnections type defines a sequence of ConnectionIdType structures.
typedef sequence <ConnectionIdType> Disconnections;

3.1.3.2.1.2.3.6 InvalidPort
The InvalidPort exception indicates one of the following errors has occurred in the specification
of a connection:

1. An errorCode of 1 indicates the provides portReference is invalid (e.g. unable to narrow
object reference) or illegal object reference,

2. An errorCode of 2 indicates the connectionId is invalid,
3. An errorCode of 3 indicates uses or provides port portName does not exist for the given

connectionId,
4. An errorCode of 4 indicates the port has reached its maximum number of connections

and is unable to accept any additional connections.
exception InvalidPort {ConnectionErrorType invalidConnections};
3.1.3.2.1.2.4 Attributes
N/A.
3.1.3.2.1.2.5 Operations
3.1.3.2.1.2.5.1 connectUsesPorts
3.1.3.2.1.2.5.1.1 Brief Rationale
Applications require the connectUsesPorts operation to establish associations between ports.
Ports provide channels through which data and/or control pass.
The connectUsesPorts supplies a component with a sequence of connection information. The
input portConnections parameter is a sequence of connectionIds, uses port names, and provides
port object references.
3.1.3.2.1.2.5.1.2 Synopsis
void connectUsesPorts (in Connections portConnections) raises
(InvalidPort);
3.1.3.2.1.2.5.1.3 Behavior
SCA7 The connectUsesPorts operation shall make the connection(s) to the component identified
by its input portConnections parameter. A port may support several connections. The resulting
portConnectionIds are used by the disconnectPorts operation when breaking specific
connection(s). SCA519 The connectUsesPorts operation shall disconnect any connections it
formed if any connections in the input portConnections parameter cannot be successfully
established.
3.1.3.2.1.2.5.1.4 Returns
This operation does not return a value.
3.1.3.2.1.2.5.1.5 Exceptions/Errors
SCA8 The connectUsesPorts operation shall raise the InvalidPort exception when the input
portConnections parameter provides an invalid connection for the specified port.
3.1.3.2.1.2.5.2 disconnectPorts
3.1.3.2.1.2.5.2.1 Brief Rationale

45

SCA Specification Version: 4.0.1

01 October 2012
Applications require the disconnectPorts operation to allow consumer/producer components to
disassociate themselves from their counterparts (consumer/producer).
The disconnectPorts operation releases a sequence of uses or provides ports from the
connection(s). The input portDisconnections is a sequence of connectionIds and (uses or
provides) port names.
3.1.3.2.1.2.5.2.2 Synopsis
void disconnectPorts (in Disconnections portDisconnections)
raises (InvalidPort);
3.1.3.2.1.2.5.2.3 Behavior
SCA10 The disconnectPorts operation shall break the connection(s) to the component identified
by the input portDisconnections parameter.
SCA11 The disconnectPorts operation shall release all ports if the input portDisconnections
parameter is a zero length sequence.
3.1.3.2.1.2.5.2.4 Returns
This operation does not return a value.
3.1.3.2.1.2.5.2.5 Exceptions/Errors
SCA12 The disconnectPorts operation shall raise the InvalidPort exception when the input
portDisconnections parameter provides an unknown connection to the PortAccessor component.
3.1.3.2.1.2.5.3 getProvidesPorts
3.1.3.2.1.2.5.3.1 Brief Rationale
The getProvidesPorts operation provides a mechanism to obtain specific provides ports. The
exact number of ports is specified in the component's software profile SCD (section 3.1.3.6). The
input/output portConnections is a sequence of connectionIds and provides port object references.
3.1.3.2.1.2.5.3.2 Synopsis
void getProvidesPorts (inout Connections portConnections) raises
(InvalidPort);
3.1.3.2.1.2.5.3.3 Behavior
The getProvidesPorts operation returns the object references associated with the input port
names and connection IDs.
3.1.3.2.1.2.5.3.4 Returns
SCA13 The getProvidesPorts operation shall return the object references that are associated with
the input port names and the connectionIds.
3.1.3.2.1.2.5.3.5 Exceptions/Errors
SCA14 The getProvidesPorts operation shall raise an InvalidPort exception when the input
portConnections parameter requests undefined connection(s).
3.1.3.2.1.3 LifeCycle
3.1.3.2.1.3.1 Description
The LifeCycle interface defines the generic operations for initializing or releasing instantiated
component-specific data and/or processing elements. The LifeCycle interface UML is depicted
in Figure 3-10.

46

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.2.1.3.2 UML

class LifeCycle

«interface»
LifeCycle

+ initialize() : void
+ releaseObject() : void

Figure 3-10: LifeCycle Interface UML

3.1.3.2.1.3.3 Types
3.1.3.2.1.3.3.1 InitializeError
The InitializeError exception indicates an error occurred during component initialization.
ErrorMessages is component-dependent, providing additional information describing the reason
why the error occurred.
exception InitializeError { StringSequence errorMessages; };
3.1.3.2.1.3.3.2 ReleaseError
The ReleaseError exception indicates an error occurred during the component releaseObject
operation. ErrorMessages is component-dependent, providing additional information describing
the reason why the error occurred.
exception ReleaseError { StringSequence errorMessages; };
3.1.3.2.1.3.4 Attributes
N/A.
3.1.3.2.1.3.5 Operations
3.1.3.2.1.3.5.1 initialize
3.1.3.2.1.3.5.1.1 Brief Rationale
The purpose of the initialize operation is to provide a mechanism to set a component to a known
initial state. For example, data structures may be set to initial values, memory may be allocated,
component may be configured to some state, etc.
3.1.3.2.1.3.5.1.2 Synopsis
void initialize() raises (InitializeError);
3.1.3.2.1.3.5.1.3 Behavior
Initialization behavior is implementation dependent.
3.1.3.2.1.3.5.1.4 Returns
This operation does not return a value.
3.1.3.2.1.3.5.1.5 Exceptions/Errors
SCA15 The initialize operation shall raise an InitializeError exception when an initialization
error occurs.
3.1.3.2.1.3.5.2 releaseObject
3.1.3.2.1.3.5.2.1 Brief Rationale

47

SCA Specification Version: 4.0.1
01 October 2012

The purpose of the releaseObject operation is to provide a means by which an instantiated
component may be torn down. There is client side and server side representation of instantiated
component. The releaseObject operation provides the mechanism for releasing the instantiated
component from the OE on the server side. The client has the responsibility to release its client
side reference of the instantiated component.
3.1.3.2.1.3.5.2.2 Synopsis
void releaseObject() raises (ReleaseError);
3.1.3.2.1.3.5.2.3 Behavior
SCA16 The releaseObject operation shall release all internal memory allocated by the
component during the life of the component.
SCA17 The releaseObject operation shall tear down the component and release it from the
operating environment. Tearing down a component implies its port connections have been
disconnected and all component ports and interfaces have been deactivated and terminated
3.1.3.2.1.3.5.2.4 Returns
This operation does not return a value.
3.1.3.2.1.3.5.2.5 Exceptions/Errors
SCA18 The releaseObject operation shall raise a ReleaseError exception when a release error
occurs.
3.1.3.2.1.4 TestableObject
3.1.3.2.1.4.1 Description
The TestableObject interface defines an operation that is used to test a component
implementation. The TestableObject interface UML is depicted in Figure 3-11.
3.1.3.2.1.4.2 UML

class TestableObj ect

«interface»

TestableObj ect

+ runT est(unsigned long, Properties*) : void

Figure 3-11: TestableObject Interface UML

3.1.3.2.1.4.3 Types
3.1.3.2.1.4.3.1 UnknownTest
The UnknownTest exception indicates the input testId parameter is not known by the component.
exception UnknownTest{};
3.1.3.2.1.4.4 Attributes
N/A.
3.1.3.2.1.4.5 Operations
3.1.3.2.1.4.5.1 runTest
3.1.3.2.1.4.5.1.1 Brief Rationale

48

SCA Specification Version: 4.0.1

01 October 2012
The runTest operation allows components to be "black box" tested. This allows built-in tests
(BITs) to be implemented which provide a means to isolate faults (both software and hardware)
within the system.
3.1.3.2.1.4.5.1.2 Synopsis
void runTest (in unsigned long testId, inout Properties
testValues) raises (UnknownTest, UnknownProperties);
3.1.3.2.1.4.5.1.3 Behavior
SCA19 The runTest operation shall use the input testId parameter to determine which of its
predefined test implementations should be performed. The id/value pair(s) of the testValues
parameter should be used to provide additional information to the implementation-specific test to
be run. SCA21 The runTest operation shall return the result(s) of the test in the testValues
parameter.
Tests to be implemented by a component are component-dependent and are specified in the
component's PRF. The testId parameter corresponds to the XML attribute testId of the property
element test in a propertyfile.
The runTest operation does not execute any testing when the input testId or any of the input
testValues are not known by the component or are out of range.
3.1.3.2.1.4.5.1.4 Returns
This operation does not return a value.
3.1.3.2.1.4.5.1.5 Exceptions/Errors
SCA23 The runTest operation shall raise the UnknownTest exception when there is no
underlying test implementation that is associated with the input testId given.
SCA24 The runTest operation shall raise the CF UnknownProperties exception when the input
parameter testValues contains any CF DataTypes that are not known by the component's test
implementation or any values that are out of range for the requested test. SCA25 The exception
parameter invalidProperties shall contain the invalid testValues properties id(s) that are not
known by the component or the value(s) are out of range.
3.1.3.2.1.5 PropertySet
3.1.3.2.1.5.1 Description
The PropertySet interface defines configure and query operations to access component
properties/attributes. The PropertySet interface UML is depicted in Figure 3-12.
3.1.3.2.1.5.2 UML

class PropertySet

«interface»
PropertySet

+ configure(Properties) : void
+ query(Properties*) : void

Figure 3-12: PropertySet Interface UML

49

SCA Specification Version: 4.0.1

3.1.3.2.1.5.3 Types
N/A.
3.1.3.2.1.5.3.1 InvalidConfiguration

01 October 2012

The InvalidConfiguration exception indicates the configuration of a component has failed (no
configuration at all was done). The message is component-dependent, providing additional
information describing the reason why the error occurred. The invalidProperties returned
indicate the properties that were invalid.
exception InvalidConfiguration { string msg; Properties
invalidProperties; };
3.1.3.2.1.5.3.2 PartialConfiguration
The PartialConfiguration exception indicates the configuration of a Component was partially
successful. The invalidProperties returned indicate the properties that were invalid.
exception PartialConfiguration { Properties invalidProperties;};
3.1.3.2.1.5.4 Attributes
N/A.
3.1.3.2.1.5.5 Operations
3.1.3.2.1.5.5.1 configure
3.1.3.2.1.5.5.1.1 Brief Rationale
The configure operation allows id/value pair configuration properties to be assigned to
components implementing this interface.
3.1.3.2.1.5.5.1.2 Synopsis
void configure (in Properties configProperties) raises
(InvalidConfiguration, PartialConfiguration);
3.1.3.2.1.5.5.1.3 Behavior
SCA26 The configure operation shall assign values to the properties as indicated in the input
configProperties parameter.
3.1.3.2.1.5.5.1.4 Returns
This operation does not return a value.
3.1.3.2.1.5.5.1.5 Exceptions/Errors
SCA27 The configure operation shall raise a PartialConfiguration exception when some
configuration properties were successfully set and some configuration properties were not
successfully set.
SCA28 The configure operation shall raise an InvalidConfiguration exception when a
configuration error occurs and no configuration properties were successfully set.
3.1.3.2.1.5.5.2 query
3.1.3.2.1.5.5.2.1 Brief Rationale
The query operation allows a component to be queried to retrieve its properties.
3.1.3.2.1.5.5.2.2 Synopsis
void query (inout Properties configProperties) raises
(UnknownProperties);

50

SCA Specification Version: 4.0.1

3.1.3.2.1.5.5.2.3 Behavior

01 October 2012

SCA29 The query operation shall return all component properties when the inout parameter
configProperties is zero size. SCA30 The query operation shall return only those id/value pairs
specified in the configProperties parameter if the parameter is not zero size.
3.1.3.2.1.5.5.2.4 Returns
This operation does not return a value.
3.1.3.2.1.5.5.2.5 Exceptions/Errors
SCA31 The query operation shall raise the CF UnknownProperties exception when one or more
properties being requested are not known by the component.
3.1.3.2.1.6 ControllableComponent
3.1.3.2.1.6.1 Description
The ControllableComponent interface provides a common API for the control of a software
component. The ControllableComponent interface UML is depicted in Figure 3-13.
3.1.3.2.1.6.2 UML.

class ControllableComponent

«interface»

ControllableComponent

+ started :boolean

+ start() :void
+ stop() :void

Figure 3-13: ControllableComponent Interface UML

3.1.3.2.1.6.3 Types
3.1.3.2.1.6.3.1 StartError
The StartError exception indicates that an error occurred during an attempt to start the
component. The errorNumber indicates a CF ErrorNumberType value. The message is
component-dependent, providing additional information describing the reason for the error.
exception StartError { ErrorNumberType errorNumber; string msg;
};
3.1.3.2.1.6.3.2 StopError
The StopError exception indicates that an error occurred during an attempt to stop the
component. The errorNumber indicates a CF ErrorNumberType value. The message is
component-dependent, providing additional information describing the reason for the error.
exception StopError { ErrorNumberType errorNumber; string msg;
};
3.1.3.2.1.6.4 Attributes
3.1.3.2.1.6.4.1 started
SCA32 The readonly started attribute shall return the component's started value.
readonly attribute boolean started;

51

SCA Specification Version: 4.0.1

3.1.3.2.1.6.5 Operations
3.1.3.2.1.6.5.1 start
3.1.3.2.1.6.5.1.1 Brief Rationale

01 October 2012

The start operation is provided to command the component implementing this interface to start
internal processing.
3.1.3.2.1.6.5.1.2 Synopsis
void start() raises (StartError);
3.1.3.2.1.6.5.1.3 Behavior
The start operation puts the component in an operating condition. The start operation is ignored
if the component is already in an operating condition. SCA33 The start operation shall set the
started attribute to a value of TRUE.
3.1.3.2.1.6.5.1.4 Returns
This operation does not return a value.
3.1.3.2.1.6.5.1.5 Exceptions/Errors
SCA34 The start operation shall raise the StartError exception if an error occurs while starting
the component.
3.1.3.2.1.6.5.2 stop
3.1.3.2.1.6.5.2.1 Brief Rationale
The stop operation is provided to command the component implementing this interface to stop
internal processing.
3.1.3.2.1.6.5.2.2 Synopsis
void stop() raises (StopError);
3.1.3.2.1.6.5.2.3 Behavior
The stop operation should disable all current component operations and put it in a non-operating
condition. The stop operation is ignored if the component is already in a non-operating condition.
SCA36 The stop operation shall set the started attribute to a value of FALSE.
3.1.3.2.1.6.5.2.4 Returns
This operation does not return a value.
3.1.3.2.1.6.5.2.5 Exceptions/Errors
SCA37 The stop operation shall raise the StopError exception if an error occurs while stopping
the component.
3.1.3.2.1.7 Resource
3.1.3.2.1.7.1 Description
The Resource interface provides a common API for the control and configuration of a software
component. The Resource interface UML is depicted in Figure 3-14.
The Resource interface inherits from the LifeCycle interface. The Resource interface may also
inherit from the ControllableComponent, ComponentIdentifier, PropertySet, TestableObject, and
PortAccessor interfaces.
The LifeCycle, ControllableComponent, ComponentIdentifier, PropertySet, TestableObject, and
PortAccessor interface operations are documented in their respective sections of this document.

52

glbick
Comment on Text
Remove Interface

glbick
Cross-Out

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.2.1.7.2 UML.

class Resource

«interface»
LifeCycle

+ initialize() :void
+ releaseObject() :void

«interface»
ComponentIdentifier

+ identifier :string

«interface»
ControllableComponent

+ started :boolean

+ start() :void
+ stop() :void

«interface»
PropertySet

«interface»
PortAccessor

+ connectUsesPorts(Connections) :void
+ disconnectPorts(Disconnections) :void
+ getProvidesPorts(Connections*) :void

INT ERROGABLE

CONT ROLLABLE

+ configure(Properties) :void
+ query(Properties*) :void

CONFIGURABLE

«interface»
TestableObj ect

+ runT est(unsigned long, Properties*) :void

CONNECT ABLE

«interface»
Resource

T EST ABLE

Figure 3-14: Resource Interface UML

3.1.3.2.1.7.3 Types
N/A
3.1.3.2.1.7.4 Attributes
N/A
3.1.3.2.1.7.5 Operations
N/A

3.1.3.2.2 Components
Base Application Components provide the structural definitions that will be utilized by
application developers.
3.1.3.2.2.1 ResourceComponent
3.1.3.2.2.1.1 Description
ResourceComponent is an abstract component and provides a basic management capability to
internal and external components.

53

glbick
Cross-Out

SCA Specification Version: 4.0.1
01 October 2012

cmp ResourceComponent

«interface»
CF::Resource

ComponentBase

ResourceComponent

Figure 3-15: ResourceComponent UML

3.1.3.2.2.1.2 Associations
• property: A ResourceComponent may have zero to many query properties.
• domainProfile: A ResourceComponent has an SPD and zero to many other domain profile

files.
3.1.3.2.2.1.3 Semantics
ResourceComponents have associated properties (e.g. test properties) that determine which
interfaces need to be supported by the component.
3.1.3.2.2.1.4 Constraints
SCA38 A ResourceComponent shall realize the Resource interface. SCA39 A
ResourceComponent shall fulfill the ComponentBase requirements.
3.1.3.2.2.2 ApplicationResourceComponent
3.1.3.2.2.2.1 Description
An ApplicationResourceComponent is a constituent part of an AssemblyComponent. An
ApplicationResourceComponent, a specialization of ResourceComponent, provides a common
API for control and configuration of ResourceComponent within the context of a deployed
application.

54

SCA Specification Version: 4.0.1
01 October 2012

cmp ApplicationResourceComponent

ApplicationComponent ResourceComponent

+fileManagement FileComponent

*

«accesses»

ApplicationResourceComponent

+appComponent 0..*

«interfaces»

«accesses»

+fileSysManagement

* FileSystemComponent

+proxyComponent 1..*

AssemblyControllerComponent

Figure 3-16: ApplicationResourceComponent UML

3.1.3.2.2.2.2 Associations

• domainProfile: An ApplicationResourceComponent identifies its provided and required
ports in its SCD and associated domain profile files.

• fileManagement: An ApplicationResourceComponent accesses files via a
FileComponent.

• fileSysManagement: An ApplicationResourceComponent accesses file systems via a
FileSystemComponent.

3.1.3.2.2.2.3 Semantics
SCA455 Each ApplicationResourceComponent shall support the mandatory Component
Identifier execute parameter as described in section 3.1.3.3.1.3.5.1, in addition to their user-
defined execute properties in the component's SPD. SCA168 Each executable
ApplicationResourceComponent shall set its identifier attribute using the Component Identifier
execute parameter. SCA456 Each executable ApplicationResourceComponent shall accept
executable parameters as specified in section 3.1.3.4.1.8.5.1.3 (ExecutableDevice::execute).
In addition to supporting the CF Base Application interfaces, an ApplicationResourceComponent
may implement and use component-specific interfaces for data and/or control. Interfaces
provided by an ApplicationResourceComponent are described in a SCD file as provides ports.
Interfaces required by an ApplicationResourceComponent are described in an SCD file as uses
ports.

55

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.2.2.2.4 Constraints
SCA172 An ApplicationResourceComponent shall fulfill the ResourceComponent
requirements.
SCA520 An ApplicationResourceComponent shall fulfill the ApplicationComponent
requirements.
Dynamically-created stringified IORs may be used to provide an IOR reference value parameter.
3.1.3.2.2.3 AssemblyControllerComponent
3.1.3.2.2.3.1 Description
The AssemblyControllerComponent is the intermediary between the
ApplicationManagerComponent and the deployed ApplicationResourceComponent. The
AssemblyControllerComponent is the overall controller for an application.

cmp AssemblyControllerComponent

ApplicationResourceComponent

ApplicationManagerComponent

+appComponent 0..*

«interfaces»

+proxyComponent 1..*

1..*

«delegates»

+assemController

AssemblyControllerComponent

Figure 3-17: AssemblyControllerComponent UML

3.1.3.2.2.3.2 Associations

• appComponent: An AssemblyControllerComponent provides the intermediary between
an ApplicationResourceComponent and external entities. Operation invocations, event
messages, log messages and exceptions are representative of the type of information that
may be exchanged between the components.

3.1.3.2.2.3.3 Semantics
N/A.
3.1.3.2.2.3.4 Constraints
SCA175 An AssemblyControllerComponent shall fulfill the ApplicationResourceComponent
requirements. SCA176 An AssemblyControllerComponent shall realize the
ControllableComponent interface.

56

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.2.2.4 ApplicationComponent
3.1.3.2.2.4.1 Description
An ApplicationComponent is an abstract component that captures the common requirements of
the SCA Base Application Components.

cmp ApplicationComponent

AssemblyComponent

+extApplication

ApplicationManagerComponent

* «manages connections» *

1
1

+appComponent 1..*

1..*

«releases»

+appComponent

ApplicationComponent

Figure 3-18: Application Component UML

3.1.3.2.2.4.2 Associations
N/A.
3.1.3.2.2.4.3 Semantics
SCA82 An ApplicationComponent created via an ExecutableDeviceComponent shall register
with its launching ApplicationFactoryComponent via the
ComponentRegistry::registerComponent operation.
3.1.3.2.2.4.4 Constraints
SCA166 An ApplicationComponent shall perform file access through the FileSystem and File
interfaces. The application filename syntax is specified in section 3.1.3.5.1.1.4.1.
SCA167 All ApplicationComponent processes shall have a handler registered for the AEP
SIGQUIT signal.

SCA169 Each ApplicationComponent shall be accompanied by the appropriate Domain Profile
files per section 3.1.3.6.
SCA173 An ApplicationComponent shall be limited to using the mandatory OS services
designated in Appendix B as specified in the SPD.
SCA457 An ApplicationComponent shall be limited to using transfer mechanisms features
specified in Appendix E for the specific platform technology implemented.

57

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.2.2.5 ApplicationComponentFactoryComponent
3.1.3.2.2.5.1 Description
An application component factory is an optional mechanism that may be used to create
application components exclusively.

cmp ApplicationComponentFactoryComponent

ApplicationComponent ComponentFactoryComponent

ApplicationComponentFactoryComponent

Figure 3-19: ApplicationComponentFactoryComponent UML

3.1.3.2.2.5.2 Associations

• createdComponent: An ApplicationComponentFactoryComponent provides a mechanism
to create new ApplicationResourceComponents.

3.1.3.2.2.5.3 Semantics
An ApplicationComponentFactoryComponent is used to create an
ApplicationResourceComponent. An AssemblyComponent is not required to use an
ApplicationComponentFactoryComponent to create application components. A software profile
specifies which ApplicationComponentFactoryComponents are to be used by the
ApplicationFactoryComponent.
3.1.3.2.2.5.4 Constraints
SCA521 An ApplicationComponentFactoryComponent shall fulfill the
ComponentFactoryComponent requirements.
SCA522 An ApplicationComponentFactoryComponent shall fulfill the ApplicationComponent
requirements.
SCA415 The ApplicationComponentFactoryComponent shall only launch
ApplicationResourceComponents.

3.1.3.3 Framework Control

3.1.3.3.1 Interfaces
Framework control within a Domain is accomplished by domain management and device
management interfaces.

58

SCA Specification Version: 4.0.1
01 October 2012

The management interfaces are Application, ApplicationDeploymentData, ApplicationFactory,
ComponentRegistry, EventChannelRegistry, DeviceManager, DeviceManagerAttributes,
DomainInstallation, DomainManager, FullComponentRegistry, ManagerRegistry,
ManagerRelease, and FullManagerRegistry. These interfaces manage the registration,
unregistration, and deployment of applications, devices, and device managers within the domain
and the controlling of applications within the domain.
Device management is accomplished through the DeviceManager interface. The device manager
creates logical devices and launches services on these logical devices.
Framework Control Interfaces are implemented using interface definitions expressed in a
Platform Specific representation of one of the Appendix E enabling technologies.
3.1.3.3.1.1 Application
3.1.3.3.1.1.1 Description
The Application class provides the interface for the control, configuration, and status of an
instantiated application in the domain.
The Application interface inherits the Resource interface. The Application interface supports
most of the Resource base application interfaces (i.e. LifeCycle, ControllableComponent,
PropertySet, TestableObject, and PortAccessor) and can optionally support the
ApplicationDeploymentData interface. The Application interface UML is depicted in Figure
3-20.
The Application::releaseObject operation provides the interface to release the computing
resources allocated during the instantiation of the application, and de-allocate the devices
associated with Application instance.
3.1.3.3.1.1.2 UML

class Application

«interface»
Resource

«interface»
ApplicationDeploymentData

+ componentProcessIds :ComponentProcessIdSequence
+ componentDevices :DeviceAssignmentSequence
+ componentImplementations :ComponentElementSequence
+ registeredComponents :Components

For the Application interface all of the
following UOFs are enabled in the
Resource interface:
- CONNECT ABLE
- CONFIGURABLE
- T EST ABLE
- CONT ROLLABLE

«interface»
Application

+ profile :string
+ name :string

INT ERROGABLE

59

SCA Specification Version: 4.0.1
01 October 2012

Figure 3-20: Application Interface UML

3.1.3.3.1.1.3 Types
N/A.

Formatted: Indent: Left: 0", Space Before: 0
pt

60

glbick
Comment on Text
Application Interface Change

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.3.1.1.4 Attributes
3.1.3.3.1.1.4.1 profile
SCA40 The readonly profile attribute shall return either the application's SAD filename or the
SAD itself. The filename is an absolute pathname relative to a mounted FileSystemComponent
and the file is obtained via the DomainManagerComponent's FileManagerComponent. Files
referenced within the profile are obtained via a FileManagerComponent.
readonly attribute string profile;
3.1.3.3.1.1.4.2 name
SCA41 This readonly name attribute shall return the name of the created application. The
ApplicationFactory interface's create operation name parameter provides the name content.
readonly attribute string name;
3.1.3.3.1.1.5 Operations
3.1.3.3.1.1.5.1 releaseObject
3.1.3.3.1.1.5.1.1 Brief Rationale
The releaseObject operation terminates execution of the application, returns all allocated
computing resources, and de-allocates the resources' capacities in use by the devices associated
with the application. Before terminating, the application removes the message connectivity with
its associated applications (e.g., ports, resources, and logs) in the domain.
3.1.3.3.1.1.5.1.2 Synopsis
void releaseObject() raises (ReleaseError);
3.1.3.3.1.1.5.1.3 Behavior
The following behavior extends the LifeCycle::releaseObject operation requirements (see section
3.1.3.2.1.3.5.2)
SCA42 The Application::releaseObject operation shall release each application component by
utilizing LifeCycle::releaseObject operation. SCA43 The Application::releaseObject operation
shall terminate the processes / tasks on allocated executable devices belonging to each
application component.
SCA44 The Application::releaseObject operation shall unload each application component
instance from its allocated ComponentBaseDevice.
SCA45 The Application::releaseObject operation shall deallocate the ComponentBaseDevice
capacities that were allocated during application creation.
SCA46 The Application::releaseObject operation shall release all object references to the
components making up the application.
SCA47 The Application::releaseObject operation shall disconnect ports (including an Event
Service's event channel consumers and producers) that were previously connected based upon
the application's associated SAD. The Application::releaseObject operation may destroy an
Event Service's event channel when no more consumers and producers are connected to it.
The Application::releaseObject operation for an application should disconnect ports first, then
release its components, call the terminate operation, and lastly call the unload operation on the
ComponentBaseDevices.
SCA49 The Application::releaseObject operation shall, upon successful application release,
write an ADMINISTRATIVE_EVENT log record.

61

SCA Specification Version: 4.0.1

01 October 2012
SCA50 The Application::releaseObject operation shall, upon unsuccessful application release,
write a FAILURE_ALARM log record.
SCA51 The Application::releaseObject operation shall send a
DomainManagementObjectRemovedEventType event to the Outgoing Domain Management
event channel upon successful release of an application. For this event,

1. The producerId is the identifier attribute of the releasing application manager.
2. The sourceId is the identifier attribute of the released application.
3. The sourceName is the name attribute of the released application.
4. The sourceCategory is "APPLICATION".

The following steps demonstrate one scenario of the application's behavior for the release of an
application that contains ComponentFactory behavior:

1. Client invokes Application::releaseObject operation.
2. Disconnect ports.
3. Release the application components.
4. Terminate the application components' and component factories processes.
5. Unload the components' executable images.
6. Deallocate capacities based upon the Device Profile and SAD.
7. Unregister application components from the component registry.
8. Generate an event to indicate the application has been removed from the domain.

Figure 3-21 is a sequence diagram depicting the behavior as described above.
sd Application Behav ior

CF::CommUser

«interface»

:Application

«interface»

:PortAccessor

«interface»

:LifeCycle

«interface»

:ExecutableDevice

«interface»

:FullComponentRegistry

:EventComponent

releaseObject()

disconnectPorts(Disconnections)

releaseObject()

terminate(ProcessID_T ype)

unload(string)

deallocateCapacity(Properties)

unregisterComponent(string)

generate event

Figure 3-21: Application Behavior

62

SCA Specification Version: 4.0.1

3.1.3.3.1.1.5.1.4 Returns
This operation does not return a value.
3.1.3.3.1.1.5.1.5 Exceptions/Errors

01 October 2012

The Application::releaseObject operation raises a ReleaseError exception when internal
processing errors prevent the successful release of any application component. See section
3.1.3.2.1.3.5.2.5 for exception handling.
3.1.3.3.1.1.5.2 getProvidesPorts
3.1.3.3.1.1.5.2.1 Brief Rationale
The getProvidesPorts operation is used to retrieve the application external provides ports as
defined in the associated SAD (profile attribute). This operation overrides the definition in
PortAccessor::getProvidesPorts section 3.1.3.2.1.2.5.3.
3.1.3.3.1.1.5.2.2 Synopsis
void getProvidesPorts (inout Connections portConnections) raises
(InvalidPort);
3.1.3.3.1.1.5.2.3 Behavior
The getProvidesPorts operation returns the external provides port object references for the
external provides ports as stated in the associated SAD (profile attribute).
3.1.3.3.1.1.5.2.4 Returns
SCA53 The getProvidesPorts operation shall return the object references that are associated with
the input provides port names for the application external ports as identified in the associated
SAD (profile attribute).
3.1.3.3.1.1.5.2.5 Exceptions/Errors
Exception requirement(s) are described in the PortAccessor interface section 3.1.3.2.1.2.5.3.5.
3.1.3.3.1.1.5.3 connectUsesPorts
3.1.3.3.1.1.5.3.1 Brief Rationale
The connectUsesPorts operation is used to connect to the application external uses ports as
defined in the associated SAD (profile attribute). This operation overrides the definition in
PortAccessor::connectUsesPorts section 3.1.3.2.1.2.5.1.
3.1.3.3.1.1.5.3.2 Synopsis
void connectUsesPorts (in Connections portConnections) raises
(InvalidPort);
3.1.3.3.1.1.5.3.3 Behavior
SCA55 The connectUsesPorts operation shall make a connection to the application components
by input portConnections parameter, which identifies the application external uses ports to be
connected to. Application external ports are associated with the application components.
SCA523 The connectUsesPorts operation shall disconnect any connections it formed if any
connections in the input portConnections parameter cannot be successfully established.
3.1.3.3.1.1.5.3.4 Returns
This operation does not return a value.
3.1.3.3.1.1.5.3.5 Exceptions/Errors
Exception requirement(s) are described in the PortAccessor interface section 3.1.3.2.1.2.5.1.5.

63

SCA Specification Version: 4.0.1

3.1.3.3.1.1.5.4 disconnectPorts
3.1.3.3.1.1.5.4.1 Brief Rationale

01 October 2012

The disconnectPorts operation is used to disconnect the application external ports as defined in
the associated SAD (profile attribute). This operation overrides the definition in
PortAccessor::disconnectPorts section 3.1.3.2.1.2.5.2.
3.1.3.3.1.1.5.4.2 Synopsis
void disconnectPorts (in Disconnections portDisconnections)
raises (InvalidPort);
3.1.3.3.1.1.5.4.3 Behavior
SCA58 The disconnectPorts operation shall break the connection(s) to the application external
ports as identified by the connectionIds referenced in the input portDisconnections parameter.
SCA59 The disconnectPorts operation shall release all external ports if the input
portDisconnections parameter is a zero length sequence.
3.1.3.3.1.1.5.4.4 Returns
This operation does not return a value.
3.1.3.3.1.1.5.4.5 Exceptions/Errors
Exception requirement(s) are described in the PortAccessor interface section 3.1.3.2.1.2.5.2.5.
3.1.3.3.1.2 ApplicationDeploymentData
3.1.3.3.1.2.1 Description
The ApplicationDeploymentData interface provides deployment attributes for an application.
3.1.3.3.1.2.2 UML

class ApplicationDeploymentData

«interface»

ApplicationDeploymentData

+ componentProcessIds :ComponentProcessIdSequence
+ componentDevices :DeviceAssignmentSequence
+ componentImplementations :ComponentElementSequence
+ registeredComponents :Components

Figure 3-22: ApplicationDeploymentData Interface UML

3.1.3.3.1.2.3 Types
3.1.3.3.1.2.3.1 ComponentProcessIdType
The ComponentProcessIdType defines a type for associating a component with its process ID.
struct ComponentProcessIdType
{

string componentId;
unsigned long processId;

};

64

SCA Specification Version: 4.0.1

3.1.3.3.1.2.3.2 ComponentProcessIdSequence

01 October 2012

The ComponentProcessIdSequence type defines an unbounded sequence of components' process
IDs.
typedef sequence <ComponentProcessIdType>
ComponentProcessIdSequence;
3.1.3.3.1.2.3.3 ComponentElementType
The ComponentElementType defines a type for associating a component with an element (e.g.,
implementation ID).
struct ComponentElementType
{

string componentId;
string elementId;

};
3.1.3.3.1.2.3.4 ComponentElementSequence
The ComponentElementSequence defines an unbounded sequence of ComponentElementType.
typedef sequence <ComponentElementType>
ComponentElementSequence;
3.1.3.3.1.2.4 Attributes
3.1.3.3.1.2.4.1 componentProcessIds
SCA61 The componentProcessIds attribute shall return the list of components' process IDs
within the application for components that are executing on a device.
readonly attribute ComponentProcessIdSequence
componentProcessIds;
3.1.3.3.1.2.4.2 componentDevices
SCA62 The componentDevices attribute shall return a list of associations between a component
and the ComponentBaseDevices, which it uses, is loaded on or is executed on.
readonly attribute DeviceAssignmentSequence componentDevices;
3.1.3.3.1.2.4.3 componentImplementations
SCA63 The componentImplementations attribute shall return the list of associations between the
components created for an application and their corresponding SPD implementation IDs.
readonly attribute ComponentElementSequence
componentImplementations;
3.1.3.3.1.2.4.4 registeredComponents
SCA64 The registeredComponents attribute shall return the list of ApplicationComponents that
have registered during instantiation or a sequence length of zero if no ApplicationComponents
have registered.
readonly attribute Components registeredComponents;
3.1.3.3.1.2.5 Operations
N/A.

65

SCA Specification Version: 4.0.1

3.1.3.3.1.3 ApplicationFactory
3.1.3.3.1.3.1 Description

01 October 2012

The ApplicationFactory interface class provides an interface to request the creation of a specific
application in the domain.
The ApplicationFactory interface class is designed using the Factory Design Pattern [8].
3.1.3.3.1.3.2 UML

class ApplicationFactory

«interface»

ApplicationFactory

+ name :string
+ softwareProfile :string

+ create(string, Properties, DeviceAssignmentSequence, Properties) :Application

Figure 3-23: ApplicationFactory Interface UML

3.1.3.3.1.3.3 Types
3.1.3.3.1.3.3.1 CreateApplicationRequestError Exception
The CreateApplicationRequestError exception is raised when the parameter CF
DeviceAssignmentSequence contains one or more invalid application component-to-device
assignment(s).
exception CreateApplicationRequestError {
DeviceAssignmentSequence invalidAssignment; };
3.1.3.3.1.3.3.2 CreateApplicationError Exception
The CreateApplicationError exception is raised when a create request is valid but the application
is unsuccessfully instantiated. The error number indicates a CF ErrorNumberType value. The
message is component-dependent, providing additional information describing the reason for the
error.
exception CreateApplicationError { ErrorNumberType errorNumber;
string msg; };
3.1.3.3.1.3.3.3 Exception InvalidInitConfiguration
The InvalidInitConfiguration exception is raised when the input initConfiguration parameter is
invalid.
exception InvalidInitConfiguration { Properties
invalidProperties; };
3.1.3.3.1.3.4 Attributes
3.1.3.3.1.3.4.1 name
SCA65 The readonly name attribute shall return the name of the application instantiated by an
application factory. The name attribute is identical to the softwareassembly element name
attribute of the application's SAD file.
readonly attribute string name;

66

SCA Specification Version: 4.0.1

3.1.3.3.1.3.4.2 softwareProfile

01 October 2012

SCA67 The readonly softwareProfile attribute shall return the filename of the SAD or the SAD
itself that is used to create the ApplicationFactoryComponent. The filename is an absolute
pathname relative to a mounted FileSystemComponent and the file is obtained via the
DomainManagerComponent's FileManagerComponent. Files referenced within the profile are
obtained via a FileManagerComponent.
readonly attribute string softwareProfile;
3.1.3.3.1.3.5 Operations
3.1.3.3.1.3.5.1 create
3.1.3.3.1.3.5.1.1 Brief Rationale
The create operation is used to create an application within the system domain.
The create operation provides a client interface to request the creation of an application on client
requested device(s) and/or the creation of an application in which the application factory
determines the necessary device(s) required for instantiation of the application.
3.1.3.3.1.3.5.1.2 Synopsis
Application create (in string name, in Properties
initConfiguration, in DeviceAssignmentSequence
deviceAssignments, in Properties deploymentDependencies) raises
(CreateApplicationError, CreateApplicationRequestError,
InvalidInitConfiguration);
3.1.3.3.1.3.5.1.3 Behavior
The create operation locates candidate DomainManagerComponents,
ApplicationFactoryComponents or ComponentBaseDevices capable of deploying application
software modules based upon information in its associated SAD (softwareProfile attribute).
The create operation validates all component-device associations in the input deviceAssignments
parameter by verifying that the ComponentBaseDevice indicated by the assignedDeviceId
element provides the necessary capacities and properties required by the component indicated by
the componentId element.
SCA68 The create operation shall identify valid component-device associations for the
application by matching the allocation properties of the application to those of each candidate
ComponentBaseDevice, for those ApplicationResourceComponent properties whose kindtype is
allocation and whose action element is not external.
SCA69 The create operation shall use the allocation property values contained in the input
deploymentDependencies parameter over the application deploymentdependencies elements or
components dependency allocation properties of application factory profile when they reference
the same property.
SCA70 The create operation shall pass the input deploymentDependencies parameter for nested
assemblyinstantiation elements creation.
The create operation may also use the input deploymentDependencies parameter for other
deployment decisions.
The create operation ignores input deploymentDependencies parameter properties that are
unknown.

67

SCA Specification Version: 4.0.1

01 October 2012
SCA71 The create operation shall allocate capacities to candidate ComponentBaseDevices of the
ApplicationComponent properties whose kindtype is allocation and whose action element is
external.
SCA72 The create operation shall deallocate any capacity allocations on
ComponentBaseDevices that do not satisfy the ApplicationComponent’s allocation requirements
or that are not utilized due to an unsuccessful application creation.
SCA73 The create operation shall load application modules onto ComponentBaseDevices that
have been granted successful capacity allocations and that satisfy the ApplicationComponent’s
allocation requirements.
SCA74 The create operation shall execute the application software modules as specified in the
AssemblyComponent's SAD file. SCA75 The create operation shall use each
ApplicationComponent’s SPD implementation code's stack size and priority elements, when
specified, for the execute options parameters.
SCA76 When the create operation creates an ApplicationComponent via an
ExecutableDeviceComponent, it shall include a Component Identifier, as defined in this section,
in the parameters parameter of the ExecutableDevice::execute operation. SCA542 When the
create operation creates an ApplicationComponent via an ExecutableDeviceComponent, it shall
include a ComponentRegistry IOR, as defined in this section, in the parameters parameter of the
ExecutableDevice::execute operation when the SAD componentinstantiation stringifiedobjectref
element is null value. SCA77 When the create operation creates an ApplicationComponent via
an ApplicationComponentFactoryComponent, it shall provide the Component Identifier
parameter as defined in this section.
The Component Identifier is a CF Properties type with an id element set to
"COMPONENT_IDENTIFIER" and a value element set to a string in the format of
"Component_Instantiation_Identifier:Application_Name". The
Component_Instantiation_Identifier is the componentinstantiation element id attribute for the
component in the application's SAD file. The Application_Name field is identical to the create
operation's input name parameter. The Application_Name field provides a specific instance
qualifier for executed components. The ComponentRegistry IOR is a CF Properties type with
an id element set to "COMPONENT_REGISTRY_IOR" and a value of the element set to a
stringified ComponentRegistry IOR that the ApplicationComponent should use for registration.
SCA81 When an ApplicationComponent is created via an ExecutableDeviceComponent, the
create operation shall pass the values of the execparam properties of the componentinstantiation
componentproperties element contained in the SAD, as parameters to the execute operation. The
create operation passes execparam parameters values as string values.
The create operation may obtain a component in accordance with the SAD via an
ApplicationComponentFactoryComponent. SCA83 The create operation, when creating a
ApplicationResourceComponent from an ApplicationComponentFactoryComponent, shall pass
the componentinstantiation componentfactoryref element properties whose kindtype element is
factoryparam as the qualifiers parameter to the referenced
ApplicationComponentFactoryComponent's createComponent operation. SCA524 The create
operation shall add the ApplicationResourceComponent(s) launched by an
ApplicationComponentFactoryComponent to the registeredComponents attribute of the
ApplicationFactoryComponent.

68

SCA Specification Version: 4.0.1

01 October 2012
SCA84 The create operation shall, in order, initialize all ApplicationComponents, then establish
connections for those components, and finally configure ApplicationResourceComponent (s) as
identified in the assemblycontroller element in the SAD. The create operation connects the ports
of the application components with the ports of other components within the application as well
as the devices and services they use in accordance with the SAD.
SCA85 The create operation shall establish connections for an AssemblyComponent which are
specified in the SAD connections element. SCA86 The create operation shall use the SAD
connectinterface element id attribute appended with ":Application_Name" as the unique
identifier for a specific connection when provided. SCA87 The create operation shall create a
unique identifier appended with ":Application_Name" and use it to designate a connection when
no SAD connectinterface element id attribute is specified. SCA88 For connections to an event
channel, the create operation shall connect a CosEventComm::PushConsumer or
CosEventComm::PushSupplier object to the event channel as specified in the SAD's
domainfinder element. SCA89 The create operation shall create the specified event channel if
the event channel does not exist.
SCA90 The create operation shall configure the ApplicationResourceComponent(s) indicated by
the assemblycontroller element in the SAD that have properties with a kindtype of "configure"
and a mode of "readwrite" or "writeonly" along with the union of properties contained in the
input initConfiguration parameter of the create operation.
SCA91 The create operation shall use the property values contained in the input
initConfiguration parameter over the property values of the SAD's assemblycontroller element
when they reference the same property.
SCA92 The create operation shall recognize application deployment channel preferences
contained within an ADD file.
SCA93 The create operation shall recognize a deploymentDependencies property which is a CF
Properties type with an id of "DEPLOYMENT_CHANNEL" and a value that is a string
sequence.
SCA94 The create operation shall recognize channel preferences contained within a
"DEPLOYMENT_CHANNEL" deploymentDependency property contained within the
deploymentDependencies parameter.
SCA95 The create operation shall attempt to allocate an application to the PDD file channel
alternatives provided within a "DEPLOYMENT_CHANNEL" property or an ADD file in a
sequential manner.
SCA96 The create operation shall utilize channel preferences expressed within a
"DEPLOYMENT_CHANNEL" property rather than those contained within an ADD file if both
exist.
SCA97 The create operation shall recognize a deployment option with a deployedname attribute
value of "DEFAULT" which matches all application instance names that are not explicitly
identified by a deployedname attribute value within the same descriptor file.
For connections to a ServiceComponent using the servicename type of the domainfinder
element, the create operation will search for a matching name from the set of service name
identifiers that have been registered with the domain. For connections to a ServiceComponent
using the servicetype type of the domainfinder element, the create operation will search for a
matching type from the set of service types that have been registered with the domain. The

69

SCA Specification Version: 4.0.1

01 October 2012
search strategy used to select a specific instance of a service type when multiple instances of the
same service type have been registered with the domain is implementation dependent.
SCA98 For domainfinder element "servicetype" connections to a ServiceComponent whose
service type is provided by a service contained within a channel element servicelist, the create
operation shall only attempt to establish connections to services within the list. If multiple
instances of the same service type exist within the servicelist, then an implementation dependent
search strategy is used to select a specific instance.
The TestableObject::runTest operation (3.1.3.2.1.4.5.1), ControllableComponent::stop operation
(3.1.3.2.1.6.5.2), and ControllableComponent::start operation (3.1.3.2.1.6.5.1) are not called as
part of the application creation process.
SCA_TBD The create operation shall create a SCA V2.2.2 Application [3]. A SCA V2.2.2
being created adheres to the requirements in SCA V2.2.2.

SCA99 The create operation shall, upon successful application creation, write an
ADMINISTRATIVE_EVENT log record.
SCA100 The create operation shall, upon unsuccessful application creation, write a
FAILURE_ALARM log record.
SCA101 The create operation shall send a DomainManagementObjectAddedEventType event to
the Outgoing Domain Management event channel upon successful creation of an application.
For this event:

1. The producerId is the identifier attribute of the application factory.
2. The sourceId is the identifier attribute of the created application.
3. The sourceName is the name attribute of the created application.
4. The sourceIOR is the object reference for the created application.
5. The sourceCategory is "APPLICATION".

3.1.3.3.1.3.5.1.4 Returns
SCA102 The create operation shall return an ApplicationManagerComponent for the created
application when the application is successfully created.
3.1.3.3.1.3.5.1.5 Exceptions/Errors
SCA103 The create operation shall raise the CreateApplicationRequestError exception when the
input deviceAssignments parameter contains one or more invalid application component to
device assignment(s).
SCA104 The create operation shall raise the CreateApplicationError exception when the create
request is valid but the application cannot be successfully instantiated due to internal processing
error(s).
SCA105 The create operation shall raise the CreateApplicationError exception when the CF
implementation provides enhanced deployment support via the use of a PDD file if the CF is not
able to allocate the application to any of the provided channel alternatives .
SCA106 The create operation shall raise the CreateApplicationError exception when the CF
implementation provides enhanced deployment support via the use of a PDD file and a
domainfinder element "servicetype" connection to a ServiceComponent whose service type is
provided by a service contained within a channel element servicelist cannot be established to a
service identified within that list.
SCA107 The create operation shall raise the InvalidInitConfiguration exception when the input

Formatted: Body Text, Left, Indent: Left: 0",
Right: 0", Space Before: 0 pt, Line spacing:
Multiple 1.22 li

Formatted: Font: Italic

70

glbick
Comment on Text
Added app backwards reqs for ApplicationFactory interface

SCA Specification Version: 4.0.1

initConfiguration parameter contains properties that are unknown by a SAD's assemblycontroller

71

SCA Specification Version: 4.0.1

01 October 2012
element. SCA108 The InvalidInitConfiguration invalidProperties parameter shall identify the
invalid properties.
3.1.3.3.1.4 DomainManager
3.1.3.3.1.4.1 Description
The DomainManager interface operations are used to configure the domain and manage the
domain's devices, services, and applications.
3.1.3.3.1.4.2 UML
The DomainManager interface UML is depicted in Figure 3-24.

class DomainManager

«interface»

PropertySet

+ configure(Properties) :void
+ query(Properties*) :void

«interface»

Ev entChannelRegistry

+ registerWithEventChannel(Object, string, string) :void
+ unregisterFromEventChannel(string, string) :void

CONFIGURABLE

EVENT CHANNEL
«interface»

DomainInstallation

«interface»
ComponentIdentifier

+ installApplication(string) :ApplicationFactoryT ype
+ uninstallApplication(string) :void

+ identifier :string

APPLICAT ION INST ALLABLE

«interface»
DomainManager

+ applicationFactories :ApplicationFactorySeq
+ applications :ApplicationSeq
+ domainManagerProfile :string
+ fileMgr :FileManager
+ managers :ManagerSeq

Figure 3-24: DomainManager Interface UML

3.1.3.3.1.4.3 Types
3.1.3.3.1.4.3.1 ManagerSeq
This type defines an unbounded sequence of ManagerType structures.
typedef sequence <ManagerType> ManagerSeq

3.1.3.3.1.4.3.2 ApplicationSeq
This type defines an unbounded sequence of deployed applications.
typedef sequence < ApplicationType> ApplicationSeq

3.1.3.3.1.4.3.3 ApplicationFactorySeq
This type defines an unbounded sequence of installed application factories.
typedef sequence < ApplicationFactoryType> ApplicationFactorySeq

72

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.3.1.4.4 Attributes
3.1.3.3.1.4.4.1 managers
The managers attribute is read-only, containing a sequence of registered
DeviceManagerComponents in the domain. SCA109 The readonly managers attribute shall
return a list of DeviceManagerComponents that have registered with the
DomainManagerComponent.
readonly attribute ManagerSeq managers;
3.1.3.3.1.4.4.2 applications
The applications attribute is read-only containing a sequence of ApplicationManagerComponents
in the domain. SCA110 The readonly applications attribute shall return the list of
ApplicationManagerComponents that have been instantiated.
readonly attribute ApplicationSeq applications;
3.1.3.3.1.4.4.3 applicationFactories
SCA435 The readonly applicationFactories attribute shall return a list with one
ApplicationFactoryComponent per AssemblyComponent (SAD file and associated files)
successfully installed (i.e. no exception raised).
readonly attribute ApplicationFactorySeq applicationFactories;
3.1.3.3.1.4.4.4 fileMgr
SCA111 The readonly fileMgr attribute shall return the DomainManagerComponent's
FileManagerComponent.
readonly attribute FileManager fileMgr;
3.1.3.3.1.4.4.5 domainManagerProfile
SCA112 The readonly domainManagerProfile attribute shall return the filename of the
DomainManagerComponent's DMD or the DMD itself. The filename is an absolute pathname
relative to a mounted FileSystemComponent and the file is obtained via the
DomainManagerComponent's FileManagerComponent. Files referenced within the profile are
obtained via the DomainManagerComponent's FileManagerComponent.
readonly attribute string domainManagerProfile;
3.1.3.3.1.4.5 Operations
N/A
3.1.3.3.1.5 DomainInstallation
3.1.3.3.1.5.1 Description
The DomainInstallation interface is used for the control of application installation within the
system domain.
3.1.3.3.1.5.2 UML
The DomainInstallation interface UML is depicted in Figure 3-25.

73

SCA Specification Version: 4.0.1
01 October 2012

class DomainInstallation

«interface»

DomainInstallation

+ installApplication(string) :ApplicationFactoryType
+ uninstallApplication(string) :void

Figure 3-25: DomainInstallation Interface UML

3.1.3.3.1.5.3 Types
3.1.3.3.1.5.3.1 ApplicationInstallationError
The ApplicationInstallationError exception type is raised when an application installation has not
completed correctly. The error number indicates a CF ErrorNumberType value. The message is
component-dependent, providing additional information describing the reason for the error.
exception ApplicationInstallationError { ErrorNumberType
errorNumber; string msg; };
3.1.3.3.1.5.3.2 InvalidIdentifier
The InvalidIdentifier exception indicates an application identifier is invalid.
exception InvalidIdentifier{};
3.1.3.3.1.5.3.3 ApplicationUninstallationError
The ApplicationUninstallationError exception type is raised when the uninstallation of an
application has not completed correctly. The error number indicates a CF ErrorNumberType
value. The message is component-dependent, providing additional information describing the
reason for the error.
exception ApplicationUninstallationError { ErrorNumberType
errorNumber; string msg; };
3.1.3.3.1.5.3.4 ApplicationAlreadyInstalled
The ApplicationAlreadyInstalled exception indicates that the application being installed is
already installed.
exception ApplicationAlreadyInstalled{};
3.1.3.3.1.5.4 Attributes.
N/A
3.1.3.3.1.5.5 Operations
3.1.3.3.1.5.5.1 installApplication
3.1.3.3.1.5.5.1.1 Brief Rationale
The installApplication operation is used to install new application software in the domain.
3.1.3.3.1.5.5.1.2 Synopsis
ApplicationFactoryType installApplication (in string
profileFileName) raises (InvalidProfile, InvalidFileName,
ApplicationInstallationError, ApplicationAlreadyInstalled);
3.1.3.3.1.5.5.1.3 Behavior

74

SCA Specification Version: 4.0.1
01 October 2012

The input profileFileName parameter is the absolute pathname of the AssemblyComponent
SAD.
SCA113 The installApplication operation shall verify the existence of the AssemblyComponent's
SAD file and all files upon which the SAD depends, within the DomainManagerComponent's
file manager.
SCA_TBD The installApplication operation shall install a SCA V2.2.2 application [3]. A SCA
V2.2.2 application being installed adheres to the requirements in SCA V2.2.2.
SCA114 The installApplication operation shall write an ADMINISTRATIVE_EVENT log
record to a DomainManagerComponent's log, upon successful application installation.
SCA115 The installApplication operation shall, upon unsuccessful application installation, write
a FAILURE_ALARM log record to a DomainManagerComponent's log.
SCA116 The installApplication operation shall send a
DomainManagementObjectAddedEventType event to the Outgoing Domain Management event
channel, upon successful installation of an application. For this event,

1. The producerId is the identifier attribute of the domain manager.
2. The sourceId is the name field of the installed application factory.
3. The sourceName is the name field of the installed application factory.
4. The sourceIOR is the object reference for the installed application factory.
5. The sourceCategory is "APPLICATION_FACTORY".

3.1.3.3.1.5.5.1.4 Returns
This operation returns the ApplicationFactoryType which includes the name that is required for
uninstallApplication (this is the softwareassembly element name attribute of the
ApplicationFactory's SAD file).
3.1.3.3.1.5.5.1.5 Exceptions/Errors
SCA117 The installApplication operation shall raise the ApplicationInstallationError exception
when the installation of the application file(s) was not successfully completed.
SCA118 The installApplication operation shall raise the CF InvalidFileName exception when the
input SAD file or any of the SAD's referenced filenames do not exist in the file system identified
by the absolute path of the input profileFileName parameter. SCA119 The installApplication
operation shall log a FAILURE_ALARM log record to a DomainManagerComponent's Log with
a message consisting of "installApplication::invalid file is xxx", where "xxx" is the input or
referenced filename, when the CF InvalidFileName exception occurs.
SCA120 The installApplication operation shall raise the CF InvalidProfile exception when any
referenced property definition is missing.
SCA121 The installApplication operation shall write a FAILURE_ALARM log record to a
DomainManagerComponent's log when the CF InvalidProfile exception is raised. The value of
the logData attribute of this record is "installApplication::invalid Profile is yyy", where "yyy" is
the input or referenced file name.
SCA122 The installApplication operation shall raise the ApplicationAlreadyInstalled exception
when the softwareassembly element name attribute of the referenced application is the same as a
previously registered application.
SCA_TBD The installApplication operation shall raise the ApplicationInstallationError
exception when SCA 2.2.2 application installation is not supported.
3.1.3.3.1.5.5.2 uninstallApplication

Formatted: Left, Right: 0"

75

glbick
Comment on Text
Added app backwards reqs for DomainInstallation interface.

glbick
Comment on Text
Added app backwards reqs for DomainInstallation interface.

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.3.1.5.5.2.1 Brief Rationale
The uninstallApplication operation is used to uninstall an application factory from the domain.

76

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.3.1.5.5.2.2 Synopsis
void uninstallApplication (in string identifier)raises
(InvalidIdentifier, ApplicationUninstallationError);
3.1.3.3.1.5.5.2.3 Behavior
The identifier parameter is the softwareassembly element name attribute of the
AssemblyComponent's SAD file.
SCA436 The uninstallApplication operation shall make the ApplicationFactoryComponent
unavailable from the DomainManagerComponent (i.e. its services no longer provided for the
application).
SCA_TBD The uninstallApplication operation shall uninstall SCA V2.2.2 application [3]. A SCA
V2.2.2 application being uninstalled adheres to the requirements in SCA V2.2.2.
SCA123 The uninstallApplication operation shall, upon successful uninstall of an application,
write an ADMINISTRATIVE_EVENT log record to a DomainManagerComponent's log.
SCA124 The uninstallApplication operation shall, upon unsuccessful uninstall of an application,
write a FAILURE_ALARM log record to a DomainManagerComponent's log.
SCA125 The uninstallApplication operation shall send a
DomainManagementObjectRemovedEventType event to the Outgoing Domain Management
event channel, upon the successful uninstallation of an application. For this event,

1. The producerId is the identifier attribute of the domain manager.
2. The sourceId is the name field of the uninstalled application factory.
3. The sourceName is the name field of the uninstalled application factory.
4. The sourceCategory is "APPLICATION_FACTORY".

3.1.3.3.1.5.5.2.4 Returns
This operation does not return a value.
3.1.3.3.1.5.5.2.5 Exceptions/Errors
SCA126 The uninstallApplication operation shall raise the InvalidIdentifier exception when the
ApplicationId is invalid.
SCA127 The uninstallApplication operation shall raise the ApplicationUninstallationError
exception when an internal error causes an unsuccessful uninstallation of the application.
3.1.3.3.1.6 DeviceManager
3.1.3.3.1.6.1 Description
The DeviceManager interface is used to manage a set of logical devices and services.

Formatted: Left, Right: 0", Space Before: 3
pt, Line spacing: single

Formatted: Font: Italic

77

glbick
Comment on Text
Added app backwards reqs for DomainInstallation interface.

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.3.1.6.2 UML

class Dev iceManager

«interface»
PortAccessor

+ connectUsesPorts(Connections) :void
+ disconnectPorts(Disconnections) :void
+ getProvidesPorts(Connections*) :void

«interface»
PropertySet

+ configure(Properties) :void
+ query(Properties*) :void

«interface»
ManagerRelease

+ shutdown() :void

CONFIGURABLE

MANAGEMENT RELEASABLE

«interface»

CONNECT ABLE

«interface»
Dev iceManagerAttributes

+ deviceConfigurationProfile :string

ComponentIdentifier

+ identifier :string

+ fileSys :FileSystem
+ registeredComponents :Components

INT ERROGABLE

«interface»
Dev iceManager

Figure 3-26: DeviceManager Interface UML

3.1.3.3.1.6.3 Types
N/A.
3.1.3.3.1.6.4 Attributes
N/A.
3.1.3.3.1.6.5 Operations
N/A.
3.1.3.3.1.7 DeviceManagerAttributes
3.1.3.3.1.7.1 Description
The DeviceManagerAttributes interface provides attributes for a device manager. The interface
for a device manager is based upon its attributes, which are:

1. Device Configuration Profile - a mapping of physical device locations to meaningful
labels (e.g., audio1, serial1, etc.), along with the devices and services to be deployed.

2. File System - the file system associated with this device manager.
3. Registered Components - a list of devices or services that have registered with this device

manager.

78

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.3.1.7.2 UML

class Dev iceManagerAttributes

«interface»

Dev iceManagerAttributes

+ deviceConfigurationProfile :string
+ fileSys :FileSystem
+ registeredComponents :Components

Figure 3-27: DeviceManagerAttributes Interface UML

3.1.3.3.1.7.3 Types
N/A.
3.1.3.3.1.7.4 Attributes
3.1.3.3.1.7.4.1 fileSys
SCA128 The readonly fileSys attribute shall return the FileSystemComponent associated with
this DeviceManagerComponent.
readonly attribute FileSystem fileSys;
3.1.3.3.1.7.4.2 deviceConfigurationProfile
SCA129 The readonly deviceConfigurationProfile attribute shall return either the
DeviceManagerComponent's DCD filename or the DCD itself. The filename is an absolute
pathname relative to a mounted FileSystemComponent and the file is obtained via a
DeviceManagerComponent's FileSystemComponent.
readonly attribute string deviceConfigurationProfile;
3.1.3.3.1.7.4.3 registeredComponents
SCA130 The readonly registeredComponents attribute shall return a list of PlatformComponents
that have registered or a sequence length of zero if no components have registered.
readonly attribute Components registeredComponents;
3.1.3.3.1.7.5 Operations
N/A.
3.1.3.3.1.8 ComponentRegistry
3.1.3.3.1.8.1 Description
The ComponentRegistry interface is used to manage the registration of components.
3.1.3.3.1.8.2 UML

class ComponentRegistry

«interface»

ComponentRegistry

+ registerComponent(ComponentType) :void

79

SCA Specification Version: 4.0.1
01 October 2012

Figure 3-28: ComponentRegistry Interface UML

3.1.3.3.1.8.3 Types
N/A
3.1.3.3.1.8.4 Attributes
N/A
3.1.3.3.1.8.5 Operations
3.1.3.3.1.8.5.1 registerComponent
3.1.3.3.1.8.5.1.1 Brief Rationale
This registerComponent operation registers a component and its provides ports.
3.1.3.3.1.8.5.1.2 Synopsis
void registerComponent (in ComponentType registeringComponent)
raises (InvalidObjectReference, RegisterError);
3.1.3.3.1.8.5.1.3 Behavior
The registerComponent operation verifies that the input registeringComponent parameter
contains a valid component reference.
SCA131 The registerComponent operation shall register the component indicated by the input
registeringComponent parameter, if it does not already exist.
The registerComponent operation ignores already existing registrations.
3.1.3.3.1.8.5.1.4 Returns
This operation does not return any value.
3.1.3.3.1.8.5.1.5 Exceptions/Errors
SCA132 The registerComponent operation shall raise the CF InvalidObjectReference when the
input registeringComponent contains a nil componentObject object reference.
SCA133 The registerComponent operation shall raise the RegisterError exception when
registration is unsuccessful.
3.1.3.3.1.9 FullComponentRegistry
3.1.3.3.1.9.1 Description
The FullComponentRegistry interface extends the ComponentRegistry interface with
unregistration capability.

80

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.3.1.9.2 UML

class FullComponentRegistry

«interface»

ComponentRegistry

+ registerComponent(ComponentT ype) :void

«interface»
FullComponentRegistry

+ unregisterComponent(string) :void

Figure 3-29: FullComponentRegistry Interface UML

3.1.3.3.1.9.3 Types
N/A
3.1.3.3.1.9.4 Attributes
N/A
3.1.3.3.1.9.5 Operations
3.1.3.3.1.9.5.1 unregisterComponent
3.1.3.3.1.9.5.1.1 Brief Rationale
The unregisterComponent operation unregisters the component as identified by the input
identifier parameter.
3.1.3.3.1.9.5.1.2 Synopsis
void unregisterComponent (in string identifier) raises
(UnregisterError);
3.1.3.3.1.9.5.1.3 Behavior
SCA134 The unregisterComponent operation shall unregister a registered component entry
specified by the input identifier parameter.
3.1.3.3.1.9.5.1.4 Returns
This operation does not return any value.
3.1.3.3.1.9.5.1.5 Exceptions/Errors
SCA135 The unregisterComponent operation shall raise the UnregisterError exception when
unregistration is unsuccessful.
3.1.3.3.1.10 EventChannelRegistry
3.1.3.3.1.10.1 Description
The EventChannelRegistry interface is used to manage the registration processes with the event
channel.

81

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.3.1.10.2 UML

The EventChannelRegistry interface UML is depicted in Figure 3-30.

class Ev entChannelRegistry

«interface»

Ev entChannelRegistry

+ registerWithEventChannel(Object, string, string) :void
+ unregisterFromEventChannel(string, string) :void

Figure 3-30: EventChannelRegistry Interface UML

3.1.3.3.1.10.3 Types
3.1.3.3.1.10.3.1 InvalidEventChannelName
The InvalidEventChannelName exception indicates an event channel name that is unknown.
exception InvalidEventChannelName{};
3.1.3.3.1.10.3.2 AlreadyConnected
The AlreadyConnected exception indicates that a registering consumer is already connected to
the specified event channel.
exception AlreadyConnected{};
3.1.3.3.1.10.3.3 NotConnected
The NotConnected exception indicates that the unregistering consumer was not connected to the
specified event channel.
exception NotConnected{};
3.1.3.3.1.10.4 Attributes.
N/A.
3.1.3.3.1.10.5 Operations
3.1.3.3.1.10.5.1 registerWithEventChannel
3.1.3.3.1.10.5.1.1 Brief Rationale
The registerWithEventChannel operation is used to connect a consumer to a domain's event
channel.
3.1.3.3.1.10.5.1.2 Synopsis
void registerWithEventChannel (in Object registeringObject, in
string registeringId, in string eventChannelName) raises
(InvalidObjectReference, InvalidEventChannelName,
AlreadyConnected);
3.1.3.3.1.10.5.1.3 Behavior
SCA136 The registerWithEventChannel operation shall connect, with a connection named by the
input registeringId parameter, the object contained within the input registeringObject parameter
to an event channel specified by the input eventChannelName parameter.
3.1.3.3.1.10.5.1.4 Returns

82

SCA Specification Version: 4.0.1
01 October 2012

This operation does not return a value.
3.1.3.3.1.10.5.1.5 Exceptions/Errors
SCA137 The registerWithEventChannel operation shall raise the CF InvalidObjectReference
exception when the input registeringObject parameter contains an invalid reference to a
CosEventComm::PushConsumer interface.
SCA138 The registerWithEventChannel operation shall raise the InvalidEventChannelName
exception when the input eventChannelName parameter contains an invalid event channel name.
SCA139 The registerWithEventChannel operation shall raise AlreadyConnected exception when
the object contained within the input registeringObject parameter already contains a connection
identified by the input registeringId parameter.
3.1.3.3.1.10.5.2 unregisterFromEventChannel
3.1.3.3.1.10.5.2.1 Brief Rationale
The unregisterFromEventChannel operation is used to disconnect a consumer from a domain's
event channel.
3.1.3.3.1.10.5.2.2 Synopsis
void unregisterFromEventChannel (in string unregisteringId, in
string eventChannelName) raises (InvalidEventChannelName,
NotConnected);
3.1.3.3.1.10.5.2.3 Behavior
SCA140 The unregisterFromEventChannel operation shall disconnect a registered component
from the event channel as identified by the input parameters.
3.1.3.3.1.10.5.2.4 Returns
This operation does not return a value.
3.1.3.3.1.10.5.2.5 Exceptions/Errors
SCA141 The unregisterFromEventChannel operation shall raise the InvalidEventChannelName
exception when the input eventChannelName parameter can't be located as a named event
channel within the domain.
SCA142 The unregisterFromEventChannel operation shall raise the NotConnected exception
when the input unregisteringId parameter is not associated with the input eventChannelName
parameter.
3.1.3.3.1.11 ManagerRegistry
3.1.3.3.1.11.1 Description
The ManagerRegistry interface is used to manage the registration of managers.
The registration operation is used to register managers at startup or during run-time for dynamic
device, service, and application insertion.
3.1.3.3.1.11.2 UML
The ManagerRegistry interface UML is depicted in Figure 3-31.

83

SCA Specification Version: 4.0.1
01 October 2012

class ManagerRegistry

«interface»

ManagerRegistry

+ registerManager(ManagerT ype) :void

Figure 3-31: ManagerRegistry Interface UML

3.1.3.3.1.11.3 Types
N/A.
3.1.3.3.1.11.4 Attributes.
N/A.
3.1.3.3.1.11.5 Operations
3.1.3.3.1.11.5.1 registerManager
3.1.3.3.1.11.5.1.1 Brief Rationale
The registerManager operation is used to register a manager and its registered components.
Software profiles may be obtained from the manager's file system.
3.1.3.3.1.11.5.1.2 Synopsis
void registerManager (in ManagerType registeringManager) raises
(InvalidObjectReference, InvalidProfile, RegisterError);
3.1.3.3.1.11.5.1.3 Behavior
The registerManager operation verifies that the input registeringManager parameter contains a
valid component reference.
SCA143 The registerManager operation shall register the manager indicated by the input
registeringManager parameter, if it does not already exist.
SCA144 The registerManager operation shall register the input registeringManager's
components.
The registerManager operation ignores already registered managers.
3.1.3.3.1.11.5.1.4 Returns
This operation does not return a value.
3.1.3.3.1.11.5.1.5 Exceptions/Errors
SCA145 The registerManager operation shall raise the CF InvalidObjectReference exception
when the input registeringManager contains a nil managerComponent componentObject object
reference.
SCA146 The registerManager operation shall raise the CF InvalidProfile exception when the
registeringManager's profile file or any of the profile's referenced files do not exist.
SCA147 The registerManager operation shall raise the RegisterError exception when
registration is unsuccessful.

84

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.3.1.12 FullManagerRegistry
3.1.3.3.1.12.1 Description
The FullManagerRegistry interface extends the ManagerRegistry interface with manager
unregistration capability. The unregisterManager operation is used to unregister managers and
provide dynamic device, service, and application extraction.
3.1.3.3.1.12.2 UML
The FullManagerRegistry interface UML is depicted in Figure 3-32.

class FullManagerRegistry

«interface»

ManagerRegistry

+ registerManager(ManagerT ype) :void

«interface»
FullManagerRegistry

+ unregisterManager(string) :void

Figure 3-32: FullManagerRegistry Interface UML

3.1.3.3.1.12.3 Types
N/A.
3.1.3.3.1.12.4 Attributes.
N/A.
3.1.3.3.1.12.5 Operations
3.1.3.3.1.12.5.1 unregisterManager
3.1.3.3.1.12.5.1.1 Brief Rationale
The unregisterManager operation is used to unregister a manager. A manager may be
unregistered during run-time for dynamic extraction or maintenance of the manager.
3.1.3.3.1.12.5.1.2 Synopsis
void unregisterManager (in string identifier) raises
(UnregisterError);
3.1.3.3.1.12.5.1.3 Behavior
SCA148 The unregisterManager operation shall unregister a manager component specified by
the input identifier parameter.
SCA149 The unregisterManager operation shall unregister all components associated with the
manager that is being unregistered.
3.1.3.3.1.12.5.1.4 Returns

85

SCA Specification Version: 4.0.1
01 October 2012

This operation does not return a value.
3.1.3.3.1.12.5.1.5 Exceptions/Errors
SCA150 The unregisterManager operation shall raise the UnregisterError exception when an
unregistration is unsuccessful.
3.1.3.3.1.13 ManagerRelease
3.1.3.3.1.13.1 Description
The ManagerRelease interface is used for terminating a manager.
3.1.3.3.1.13.2 UML

class ManagerRelease

«interface»

ManagerRelease

+ shutdown() :void

Figure 3-33: ManagerRelease Interface UML

3.1.3.3.1.13.3 Types
N/A.
3.1.3.3.1.13.4 Attributes
N/A.
3.1.3.3.1.13.5 Operations
3.1.3.3.1.13.5.1 shutdown
3.1.3.3.1.13.5.1.1 Brief Rationale
The shutdown operation provides the mechanism to terminate a manager.
3.1.3.3.1.13.5.1.2 Synopsis
void shutdown();
3.1.3.3.1.13.5.1.3 Behavior
SCA151 The shutdown operation shall unregister the manager from the domain.
SCA152 The shutdown operation shall perform a releaseObject on all of the manager's registered
components that were created as specified in the profile attribute that supports the LifeCycle
interface.
SCA153 The shutdown operation shall terminate the execution of each component that was
created as specified in the profile attribute after they have unregistered with the manager.
SCA437 The shutdown operation shall cause the manager to be unavailable (i.e. released from
the operating environment and its process terminated on the OS), when all of the manager's
registered components are unregistered and all created components are terminated.
3.1.3.3.1.13.5.1.4 Returns
This operation does not return any value.
3.1.3.3.1.13.5.1.5 Exceptions/Errors

86

SCA Specification Version: 4.0.1

This operation does not raise any exceptions.
3.1.3.3.2 Components

01 October 2012

Framework Control Components provide the structural definitions for the components that
perform deployment behavior within a platform. Framework control within a Domain is
accomplished by the DomainManagerComponent and DeviceManagerComponent.
All Framework Control Components provide a management capability. These components
manage the registration and unregistration of applications, devices, and device managers within
the domain and the controlling of applications within the domain. The implementation of the
ApplicationManagerComponent, ApplicationFactoryComponent, and
DomainManagerComponent components are logically coupled to provide a complete domain
management implementation and service.
PlatformComponent management is performed by the DeviceManagerComponent. The
DeviceManagerComponent is responsible for creation of ComponentBaseDevices and launching
ServiceComponents.
3.1.3.3.2.1 AssemblyComponent
3.1.3.3.2.1.1 Description
AssemblyComponents provide an abstraction for a capability that performs the functions of a
specific SCA-compliant product (e.g. a waveform). They are designed to meet the requirements
of a specific acquisition and are not defined by the SCA except as they interface to the OE. An
AssemblyComponent contains dependencies to services, specified as connections, within the
descriptor. A created AssemblyComponent contains a collection of
ApplicationResourceComponent(s) and non-SCA components.

Figure 3-34: AssemblyComponent UML

87

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.3.2.1.2 Associations
• domainProfile: A ResourceComponent has a SAD and zero to many other domain profile

files.
• appComponent: The collection of ApplicationResourceComponents identified within the

SAD.
• factoryComponent: The collection of ApplicationComponentFactoryComponents

identified within the SAD.
• utilityComponent: The collection of components that don't realize the Resource interface

identified within the SAD.
3.1.3.3.2.1.3 Semantics
An AssemblyComponent's dependencies to the log, file system, Event Service, and other
ServiceComponents are specified as connections in the SAD using the domainfinder element.
Use of an ApplicationComponentFactoryComponent per section 3.1.3.1.2.2 is optional.
An AssemblyComponent may define interfaces that are visible to entities external to the
application. These external interfaces are Ports, referenced in the AssemblyComponent SAD
externalports element.
3.1.3.3.2.1.4 Constraints
SCA155 An AssemblyComponent shall be accompanied by the appropriate Domain Profile files
per section 3.1.3.6.
SCA156 An AssemblyComponent shall have at least one AssemblyControllerComponent.
3.1.3.3.2.2 ApplicationManagerComponent
3.1.3.3.2.2.1 Description
The ApplicationManagerComponent provides the means for the control, configuration, and
status of an AssemblyComponent in the domain. The ApplicationManagerComponent is the
proxy for the deployed AssemblyComponent.
An ApplicationManagerComponent is returned by the create operation of an
ApplicationFactoryComponent.

88

SCA Specification Version: 4.0.1
01 October 2012

cmp ApplicationManagerComponent

«interface»

CF::Application

+ profile :string
+ name :string

ComponentBase AssemblyComponent

+appComponent 1..* +extApplication *

LogComponent

+targetLog

«releases»

«manages connections»

+eventChannel

0..*

Ev entComponent

0..*

«produces» 1 *

«manages»

ApplicationManagerComponent

1..*

+capacityProvider

+assemController «delegates»

1..*

1..*

1..*

«deallocates» 1..* ComponentBaseDev ice

AssemblyControllerComponent

«unloads»

«terminate»

+moduleContainer 1..*

+processContainer 1..*

LoadableDev iceComponent

ExecutableDev iceComponent

Figure 3-35: ApplicationManagerComponent UML

3.1.3.3.2.2.2 Associations

• domainProfile: An ApplicationManagerComponent is associated with a SAD and zero to
many other domain profile files.

• extApplication: An ApplicationManagerComponent may contain ports which may be
connected to or disconnected from external AssemblyComponent(s).

• eventChannel: An ApplicationManagerComponent sends event messages to event
channels, disconnects producers and consumers from event channels and may destroy
event channels.

• capacityProvider: An ApplicationManagerComponent deallocates capacities from its
managed components from the ComponentBaseDevice(s) upon which they are deployed .

• targetLog: An ApplicationManagerComponent produces log messages and disseminates
them to system log(s).

• assemController: An ApplicationManagerComponent delegates requests for an
AssemblyComponent to its AssemblyControllerComponent.

• processContainer: An ApplicationManagerComponent terminates its processes from their
containing ExecutableDeviceComponent(s).

89

SCA Specification Version: 4.0.1
01 October 2012

• moduleContainer: An ApplicationManagerComponent unloads its constituent software
modules from their containing LoadableDeviceComponent(s).

• appComponent: The collection of ComponentBase(s) (i.e.
ApplicationResourceComponents or ApplicationComponentFactoryComponents)
identified within the SAD which are managed by the ApplicationManagerComponent.

3.1.3.3.2.2.3 Semantics
SCA158 An ApplicationManagerComponent shall delegate the implementation of the runTest,
start, stop, configure, and query operations to the AssemblyControllerComponent(s) as identified
by the AssemblyComponent's SAD assemblycontroller element (Assembly Controller).
SCA159 The ApplicationManagerComponent shall propagate exceptions raised by the
AssemblyComponent's AssemblyControllerComponent(s).
SCA160 The ApplicationManagerComponent shall not delegate the initialize operation to its
ApplicationComponentFactoryComponent(s), ApplicationResourceComponent(s) or
AssemblyControllerComponent(s).
SCA161 The ApplicationManagerComponent shall delegate the runTest operation to all
Component(s) as identified by the AssemblyComponent's SAD assemblycontroller element
(Assembly Controller) which have matching test IDs.
SCA162 The ApplicationManagerComponent shall delegate configure and query operations to
all ApplicationResourceComponent(s) as identified by the AssemblyComponent's SAD
assemblycontroller element (Assembly Controller), which have matching property IDs.
SCA163 The ApplicationManagerComponent shall raise configure operation
InvalidConfiguration exception when the input configProperties parameter contains unknown
properties. A property is considered unknown if it can't be recognized by a component
designated by the ApplicationManagerComponent profile attribute's assemblycontroller element.
SCA543 The ApplicationManagerComponent shall raise the query operation UnknownProperties
exception when the input configProperties parameter contains unknown properties.
3.1.3.3.2.2.4 Constraints
SCA164 An ApplicationManagerComponent shall realize the Application interface. SCA165 An
ApplicationManagerComponent shall fulfill the ComponentBase requirements.
SCA525 An ApplicationManagerComponent shall realize the ControllableComponent,
ComponentIdentifier, PropertySet, TestableObject, and PortAccessor interfaces.
SCA_TBD An ApplicationManagerComponent shall release a SCA V2.2.2 application [3]. An
SCA V2.2.2 application being release adheres to the requirements in SCA V2.2.2.
SCA_TBD An ApplicationManagerComponent shall delegate configure, query, start, stop, and
runTest operations to a SCA V2.2.2 application assembly controller.
3.1.3.3.2.3 ApplicationFactoryComponent
3.1.3.3.2.3.1 Description
The ApplicationFactoryComponent provides a dynamic mechanism to create a specific type of
ApplicationManagerComponent in the domain.

90

glbick
Comment on Text
Added app backwards reqs for ApplicationManagerComponent

SCA Specification Version: 4.0.1
01 October 2012

Figure 3-36: ApplicationFactoryComponent UML

3.1.3.3.2.3.2 Associations

• domainProfile: An ApplicationFactoryComponent is associated with a SAD and zero to
many other domain profile files.

• eventChannel: An ApplicationFactoryComponent sends event messages to event
channels, disconnects producers and consumers from event channels and may destroy
event channels.

• targetLog: An ApplicationFactoryComponent produces log messages and disseminates
them to system log(s).

• processContainer: An ApplicationFactoryComponent initiates processes on
ExecutableDeviceComponent(s).

• moduleContainer: An ApplicationFactoryComponent loads modules onto
LoadableDeviceComponent(s).

• targetDevice: An ApplicationFactoryComponent allocates and deallocates
ComponentBaseDevice(s) capacities.

• appComponent: An ApplicationFactoryComponent initializes, configures and manages
connections for its ApplicationResourceComponent(s).

• threadContainer: An ApplicationFactoryComponent initiates threads via
ApplicationComponentFactoryComponent(s).

91

SCA Specification Version: 4.0.1
01 October 2012

• appManager: An ApplicationFactoryComponent creates an
ApplicationManagerComponent which acts as a proxy for the instantiated
AssemblyComponent.

• componentRegistry: An ApplicationFactoryComponent obtains componentRegistries that
contain an inventory of the created application component(s).

3.1.3.3.2.3.3 Semantics
The following steps demonstrate one scenario of the behavior of an application factory for the
creation of an application:

1. Client invokes the create operation. Evaluate the Domain Profile for available devices
that meet the application's memory and processor requirements, available dependent
applications, and dependent libraries needed by the application.

2. Allocate the device(s) memory and processor utilization. Update the memory and
processor utilization of the devices.

3. Create an instance of an Application, if the requested application can be created.
4. Application Factory component creates a ComponentRegistry instance to be used for

deployed application component registration.
5. Load the application software modules on the devices using the appropriate Device(s)

interface provided the application software modules haven't already been loaded.
6. Execute the application software modules on the devices using the appropriate

ExecutableDevice instance as indicated by the application's software profile. If the
component launched is a resource component supporting the Resource interface, then
narrow the component reference to a resource component. If the component launched is a
component factory, then narrow the reference to be a component factory component.

7. The launched application components register via the ComponentRegistry interface.
8. The create operation writes a log message indicating that a new application was created.
9. Return the Application object reference.

Figure 3-37 is a sequence diagram depicting the behavior as described above.

92

SCA Specification Version: 4.0.1
01 October 2012

sd ApplicationFactory Behav ior

User

«interface»
:ApplicationFactory

«interface»
:ExecutableDevice

:LogComponent

create(string, Properties, DeviceAssignmentSequence, Properties) :Application

allocateCapacity(Properties) :boolean

«interface»
:Application

«interface»

:ComponentRegistry

load(FileSystem, string, LoadT ype)

execute(string, Properties, Properties) :ProcessID_T ype

«interface»
:Resource

registerComponent(ComponentT ype)

«interface»
:ComponentFactory

registerComponent(ComponentT ype)

write log message

Figure 3-37: ApplicationFactory Application Creation Behavior

3.1.3.3.2.3.4 Constraints
SCA174 An ApplicationFactoryComponent shall realize the ApplicationFactory interface.
3.1.3.3.2.4 DomainManagerComponent
3.1.3.3.2.4.1 Description
The DomainManagerComponent is used for the control and configuration of the system domain.

93

SCA Specification Version: 4.0.1
01 October 2012

cmp DomainManagerComponent

«interface»

CF::DomainManager

ComponentBase

+domainComponent 1..*

+ domainManagerProfile :string
+ managers :ManagerSeq
+ applications :ApplicationSeq
+ applicationFactories :ApplicationFactorySeq
+ fileMgr :FileManager

«removes»

+appFactories
ApplicationFactoryComponent

0..*

LogComponent

+targetLog

0..*

«writes»

«creates»

DomainManagerComponent

«restores»

«creates»

+managerRegistry

0..*

«interface»
:M anagerRegistry

+componentRegistry

«interface»

:ComponentRegistry

0..*

«manages»

«uses»

«manages»

+fileManager

FileManagerComponent

+utilityComponent 0..*

+eventChannel 0..*

Serv iceComponent

Ev entComponent

Figure 3-38: DomainManagerComponent UML

3.1.3.3.2.4.2 Associations

• domainProfile: A DomainManagerComponent is associated with a DMD and zero to
many other domain profile files.

• eventChannel: A DomainManagerComponent creates event channels, sends event
messages to event channels, disconnects producers and consumers from event channels
and may destroy event channels.

• targetLog: A DomainManagerComponent creates the system log, produces and
disseminates log messages.

• managerRegistry: A DomainManagerComponent creates managerRegistries that contain
an inventory of the registered manager components (e.g. DeviceManagerComponent or
DomainManagerComponent).

• fileManager: A DomainManagerComponent creates and manages
FileManagerComponents within the domain.

• appFactories: A DomainManagerComponent restores any
ApplicationFactoryComponent(s) instantiated in previous incarnations of the domain.

• domainComponent: A DomainManagerComponent removes and disconnects, as
necessary, components registered within the domain.

• utilityComponent: A DomainManagerComponent utilizes the capabilities provided by
ServiceComponent(s) within the domain.

94

SCA Specification Version: 4.0.1
01 October 2012

• componentRegistry: A DomainManagerComponent creates componentRegistries that
contain an inventory of the registered platform components.

3.1.3.3.2.4.3 Semantics
SCA177 The DomainManagerComponent identifier shall be identical to the
domainmanagerconfiguration element id attribute of the DMD file.
Since a log service is not a required component, a DomainManagerComponent may, or may not
have access to a log. However, if log service(s) are available, a DomainManagerComponent may
use one or more of them. SCA178 A DomainManagerComponent shall define its utilized
ServiceComponents in the DMD.
SCA179 A DomainManagerComponent shall write an ADMINISTRATIVE_EVENT log record
to a DomainManagerComponent's log, when the managers attribute is obtained by a client.
SCA180 A DomainManagerComponent shall write an ADMINISTRATIVE_EVENT log record
to a DomainManagerComponent's log, when the applications attribute is obtained by a client.
SCA181 A DomainManagerComponent shall write an ADMINISTRATIVE_EVENT log record
to a DomainManagerComponent's log, when the applicationFactories attribute is obtained by a
client.
SCA182 A DomainManagerComponent shall write an ADMINISTRATIVE_EVENT log record
to a DomainManagerComponent's log, when the fileMgr attribute is obtained by a client.
A DomainManagerComponent may begin to use a service specified in the DMD only after the
service has successfully registered with the DomainManagerComponent via the
ComponentRegistry::registerComponent operation.
SCA184 A DomainManagerComponent shall create its own FileManagerComponent that
consists of all registered DeviceManagerComponent's FileSystemComponents.
SCA185 Upon system startup, a DomainManagerComponent shall restore
ApplicationFactoryComponents for AssemblyComponents that were previously installed by the
DomainManager::installApplication operation.
SCA186 A DomainManagerComponent shall add the restored application factories to the
DomainManager interface applicationFactories attribute.
SCA187 A DomainManagerComponent shall create the Incoming Domain Management and
Outgoing Domain Management event channels.
SCA189 The registerComponent operation shall write an ADMINISTRATIVE_EVENT log
record to a DomainManagerComponent log upon successful component registration.
SCA191 The registerComponent operation shall write a FAILURE_ALARM log record to a
DomainManagerComponent log upon unsuccessful component registration.
SCA193 The registerComponent operation shall send a
DomainManagementObjectAddedEventType event to the Outgoing Domain Management event
channel, upon successful registration of a component. For this event,

1. The producerId is the identifier attribute of the domain manager.
2. The sourceId is the identifier attribute of the registered component.
3. The sourceIOR is the object reference for the registered component.
4. The sourceCategory is the SourceCategoryType of the registered component.

95

SCA Specification Version: 4.0.1

01 October 2012
SCA194 The registerComponent operation shall establish any pending connections from the
registeringComponent.
The unregisterComponent operation may destroy the Event Service event channel when no more
consumers and producers are connected to it.
SCA195 The unregisterComponent operation shall, upon the successful unregistration of a
component, write an ADMINISTRATIVE_EVENT log record to a
DomainManagerComponent's log.
SCA196 The unregisterComponent operation shall send a
DomainManagementObjectRemovedEventType event to the Outgoing Domain Management
event channel, upon successful unregistration of a component. For this event,

1. The producerId is the identifier attribute of the domain manager.
2. The sourceId is the identifier attribute of the unregistered component.
3. The sourceCategory is the SourceCategoryType of the unregistered component.

SCA197 The unregisterComponent operation shall, upon unsuccessful unregistration of a
component, write a FAILURE_ALARM log record to a DomainManagerComponent's log.
SCA198 The unregisterComponent operation shall disconnect any connections (including those
made to the Event Service event channels) to the unregistering component indicated by the input
identifier parameter. SCA199 Connections broken as a result of this unregisterComponent
operation shall be considered as pending for future connections when the component to which
the component was connected still exists.
SCA201 The registerManager operation shall establish any connections for the
DeviceManagerComponent indicated by the input registeringManager parameter, which are
specified in the connections element of the DeviceManagerComponent's DCD file, that are
possible with the current set of registered components. Connections not currently possible are
left unconnected pending future component registrations.
SCA202 For connections established for an Event Service's event channel, the registerManager
operation shall connect a CosEventComm::PushConsumer or CosEventComm::PushSupplier
object to the event channel as specified in the DCD's domainfinder element. SCA203 If the event
channel does not exist, the registerManager operation shall create the event channel.
SCA204 The registerManager operation shall mount the DeviceManagerComponent's
FileSystemComponent to the DomainManagerComponent's
FileManagerComponent. SCA205 The mounted FileSystem name shall have the format,
"/DomainName/HostName", where DomainName is the name of the domain and HostName is
the identifier of the input registeringManager.
SCA206 The registerManager operation shall, upon unsuccessful DeviceManagerComponent
registration, write a FAILURE_ALARM log record to a DomainManagerComponent's Log.
SCA207 The registerManager operation shall send a
DomainManagementObjectAddedEventType event to the Outgoing Domain Management event
channel upon successful registration of a device manager. For this event,

1. The producerId is the identifier attribute of the domain manager.
2. The sourceId is the identifier attribute of the registered device manager.
3. The sourceIOR is the object reference for the registered device manager.
4. The sourceCategory is “DEVICE_MANAGER”.

96

SCA Specification Version: 4.0.1
01 October 2012

The DomainManagerComponent associates the input DeviceManagerComponent's registered
components with the DeviceManagerComponent in order to support the unregisterManager
operation.
SCA208 The unregisterManager operation shall disconnect the established connections
(including those made to the Event Service event channels) of the unregistering manager as well
as for its registered components that have not already been disconnected by the unregistering
manager.
SCA209 Connections broken as a result of the unregisterManager operation shall be considered
as pending for future connections.
The unregisterManager operation may destroy the Event Service channel when no more
consumers and producers are connected to it.
SCA210 The unregisterManager operation shall unmount all DeviceManagerComponent's file
systems from its FileManagerComponent.
SCA211 The unregisterManager operation shall, upon the successful unregistration of a
DeviceManagerComponent, write an ADMINISTRATIVE_EVENT log record to a
DomainManagerComponent's log.
SCA212 The unregisterManager operation shall, upon unsuccessful unregistration of a
DeviceManagerComponent, write a FAILURE_ALARM log record to a
DomainManagerComponent's log.
SCA213 The unregisterManager operation shall send a
DomainManagementObjectRemovedEventType event to the Outgoing Domain Management
event channel, upon successful unregistration of a device manager. For this event,

1. The producerId is the identifier attribute of the domain manager.
2. The sourceId is the identifier attribute of the unregistered device manager.
3. The sourceCategory is “DEVICE_MANAGER”.

3.1.3.3.2.4.4 Constraints
SCA214 A DomainManagerComponent shall realize the DomainManager interface.
SCA532 A DomainManagerComponent shall fulfill the ComponentBase requirements with the
exception that support for the LifeCycle interface is optional.
3.1.3.3.2.5 DeviceManagerComponent
3.1.3.3.2.5.1 Description
A DeviceManagerComponent manages a set of ComponentBaseDevice and ServiceComponent
components on a node. The DeviceManagerComponent provides the capability of starting up the
managed component(s)' main processes on a given node.

97

SCA Specification Version: 4.0.1
01 October 2012

cmp Dev iceManagerComponent

ComponentBase

«interface»
CF::Dev iceManager

«interface»
:M anagerRegistry

+registrar

«registers»

FileSystemComponent +nodeFileSystem

0..*

+componentRegistry

«interface»
0..* «creates»

0..*

Dev iceManagerComponent
«creates»

1..*
:ComponentRegistry

«manages»

+deployedCF 0..*

1..*

1..*

«manages»

+domainRegistrar
«registers»

1

«manages»

+deployedService 0..*
+deployedDevice 0..*

PlatformComponentFactoryComponent

ComponentBaseDev ice
Serv iceComponent

Figure 3-39: DeviceManagerComponent UML

3.1.3.3.2.5.2 Associations

• domainProfile: A DeviceManagerComponent is associated with a DCD and zero to many
other domain profile files.

• registrar: A DeviceManagerComponent registers with a DomainManagerComponent via
its associated ManagerRegistry instance.

• nodeFileSystem: A DeviceManagerComponent creates FileSystemComponent(s) and
mounts them on a FileManagerComponent, if applicable.

• deployedCF: A DeviceManagerComponent deploys, initializes and configures
PlatformComponentFactoryComponent(s) as necessary.

• deployedService: A DeviceManagerComponent deploys, initializes and configures
ServiceComponent(s) as necessary.

• deployedDevice: A DeviceManagerComponent deploys, initializes and configures
ComponentBaseDevice (s) as necessary.

• componentRegistry: A DeviceManagerComponent creates componentRegistries that
contain an inventory of the created PlatformComponent(s).

• domainRegistrar: A DeviceManagerComponent registers with a
DomainManagerComponent via the DomainManagerComponent's associated
ComponentRegistry instance.

3.1.3.3.2.5.3 Semantics
SCA215 A DeviceManagerComponent shall be accompanied by the appropriate Domain Profile
files per section 3.1.3.6.

98

SCA Specification Version: 4.0.1
01 October 2012

SCA216 A DeviceManagerComponent upon start up shall register with a
DomainManagerComponent via the ManagerRegistry interface. SCA450 A
DeviceManagerComponent shall use the information in its DCD for determining:

1. Services to be deployed for this DeviceManagerComponent (for example, log(s)),
2. ComponentBaseDevices to be created for this device manager (when the DCD

deployondevice element is not specified then the DCD componentinstantiation element is
deployed on the same hardware device as the device manager),

3. ComponentBaseDevices to be deployed on (executing on) another
ComponentBaseDevice,

4. ComponentBaseDevices to be aggregated to another ComponentBaseDevice,
5. Mount point names for file systems,
6. The DeviceManagerComponent's identifier attribute value which is the DCD's id attribute

value, and
7. DomainManagerComponent's ManagerRegistry and ComponentRegistry references

SCA217 A DeviceManagerComponent shall create FileSystemComponents implementing the
FileSystem interface for each OS file system. SCA218 If multiple FileSystemComponents are to
be created, the DeviceManagerComponent shall mount created FileSystemComponents to a
FileManagerComponent (widened to a FileSystemComponent through the FileSys attribute).
The mount points used for the created file systems are identical to the values identified in the
filesystemnames element of the DeviceManagerComponent's DCD.
The DeviceManagerComponent can launch ComponentBaseDevices,
PlatformComponentFactoryComponents and ServiceComponents directly (e.g. thread,
posix_spawn) or by using an ExecutableDeviceComponent. These components register with the
launching DeviceManagerComponent via the ComponentRegistry::registerComponent
operation. SCA219 Upon successful registration via the ComponentRegistry interface, the
DeviceManagerComponent shall add the components to its registeredComponents
attribute. SCA221 The DeviceManagerComponent shall add the ComponentBaseDevice and
ServiceComponent components launched by a PlatformComponentFactoryComponent to the
registeredComponents attribute of the DeviceManagerComponent.
SCA442 When a ComponentBaseDevice is launched directly (e.g. thread, posix_spawn) or by
using an ExecutableDeviceComponent, the DeviceManagerComponent shall supply execute
operation parameters for a device consisting of:

1. Component Registry IOR when the DCD componentinstantiation stringifiedobjectref
element is null value - The ID is "COMPONENT_REGISTRY_IOR" and the value is a
string that is the ComponentRegistry stringified IOR;

2. Profile Name - The ID is "PROFILE_NAME" and the value is a string that is the full
mounted file system file path name;

3. Device Identifier - The ID is "DEVICE_ID" and the value is a string that corresponds to
the DCD componentinstantiation id attribute;

4. Composite Device IOR - The ID is "Composite_DEVICE_IOR" and the value is a string
that is an AggregateDeviceComponent stringified IOR (this parameter is only used when
the DCD componentinstantiation element represents the child device of another
componentinstantiation element);

99

SCA Specification Version: 4.0.1
01 October 2012

5. The execute ("execparam") properties as specified in the DCD for a
componentinstantiation element (a DeviceManagerComponent passes execparam
parameters' IDs and values as string values).

SCA224 A DeviceManagerComponent shall use the stacksize and priority elements as specified
in the componentinstantiation element's SPD implementation code for the execute operation
options parameter.
SCA449 If a PlatformComponentFactoryComponent is deployed by the
DeviceManagerComponent, a DeviceManagerComponent shall supply execute operation
parameters consisting of:

1. Component Registry IOR - The ID is "COMPONENT_REGISTRY_IOR" and the value
is a string that is the ComponentRegistry stringified IOR when the DCD
componentinstantiation stringifiedobjectref element is null value;

2. Component Identifier - The ID is "COMPONENT_IDENTIFIER" and the value is a
string that corresponds to the DCD componentinstantiation id attribute;

3. The execute ("execparam") properties as specified in the DCD for a
componentinstantiation element (a DeviceManagerComponent passes execparam
parameters' IDs and values as string values).

SCA538 If a ServiceComponent is deployed by the DeviceManagerComponent, a
DeviceManagerComponent shall supply execute operation parameters consisting of:

1. Component Registry IOR - The ID is "COMPONENT_REGISTRY_IOR" and the value
is a string that is the ComponentRegistry stringified IOR when the DCD
componentinstantiation stringifiedobjectref element is null value;

2. Service Name when the DCD componentinstantiation usagename element is non-null
value - The ID is "SERVICE_NAME" and the value is a string in an "identifier\type"
format that corresponds to the DCD componentinstantiation usagename element;

3. The execute ("execparam") properties as specified in the DCD for a
componentinstantiation element (a DeviceManagerComponent passes execparam
parameters' IDs and values as string values).

SCA438 When a ComponentBaseDevice is created via PlatformComponentFactoryComponent,
the DeviceManagerComponent shall supply the following properties as the qualifiers parameter
to the referenced ComponentFactory::createComponent operation:

1. Profile Name - The ID is "PROFILE_NAME" and the value is a string that is the full
mounted file system file path name;

2. Device Identifier - The ID is "DEVICE_ID" and the value is a string that corresponds to
the DCD componentinstantiation id attribute;

3. Composite Device IOR - The ID is "Composite_DEVICE_IOR" and the value is a string
that is an AggregateDeviceComponent stringified IOR (this parameter is only used when
the DCD componentinstantiation element represents the child device of another
componentinstantiation element);

4. The componentinstantiation componentfactoryref element properties whose kindtype
element is factoryparam.

10

SCA Specification Version: 4.0.1
01 October 2012

SCA226 The DeviceManagerComponent shall use the stacksize and priority elements as
specified in the componentinstantiation element's SPD implementation code as qualifiers
parameter for the ComponentFactory::createComponent operation.
SCA439 When a ServiceComponent is created via a PlatformComponentFactoryComponent, the
DeviceManagerComponent shall supply the following properties as the qualifiers parameter to
the referenced PlatformComponentFactoryComponent's createComponent operation:

1. Service Name when the DCD componentinstantiation usagename element is non-null
value - The ID is "SERVICE_NAME" and the value is a string in an "identifier\type"
format that corresponds to the DCD componentinstantiation usagename element;

2. The componentinstantiation componentfactoryref element properties whose kindtype
element is factoryparam.

SCA227 The DeviceManagerComponent shall initialize registered components that are
instantiated by the DeviceManagerComponent provided they realize the LifeCycle interface.
Registered components may also be obtained from a PlatformComponentFactoryComponent.
SCA228 After component initialization, the DeviceManagerComponent shall configure
registered components that are instantiated by the DeviceManagerComponent, provided they
realize the PropertySet interface. SCA229 The DeviceManagerComponent shall configure a
DCD's componentinstantiation element provided the componentinstantiation element has
configure readwrite or writeonly properties with values.
SCA230 The registerComponent operation shall register the registeringComponent with the
domain manager when the device manager has already registered and the registeringComponent
has been successfully added to the DeviceManagerComponent's registeredComponents attribute.
SCA231 The registerComponent operation shall, upon unsuccessful component registration,
write a FAILURE_ALARM log record to a domain manager's log.
SCA232 The unregisterComponent operation shall, upon unsuccessful unregistration of a
component, write a FAILURE_ALARM log record to a DomainManagerComponent's log.
SCA233 The unregisterComponent operation shall unregister the registered component specified
by the input identifier parameter from the domain manager if it is registered with the device
manager and the device manager is not shutting down.
Figure 3-40: depicts a device manager startup scenario as follows:

1. Process DCD and create a ComponentRegistry instance.
2. Launch platform components passing the component registry object reference for

registration.
3. Deployed components register with the ComponentRegistry instance.
4. Initialize all deployed components.
5. Configure all deployed components.

10

SCA Specification Version: 4.0.1
01 October 2012

sd Dev ice Manager Startup Scenario

«interface»

:DeviceManager

«interface»
:ComponentRegistry

«interface»

:ExecutableDevice

«interface»

:Device

registerComponent(ComponentT ype)

registerComponent(ComponentT ype)

initialize()

initialize()

configure(Properties)

configure(Properties)

Figure 3-40: Device Manager Startup Scenario

3.1.3.3.2.5.4 Constraints
SCA234 A DeviceManagerComponent shall realize the DeviceManager interface. SCA235 A
DeviceManagerComponent shall fulfill the ComponentBase requirements with the exception that
support for the LifeCycle interface is optional. SCA236 Each mounted file system name shall be
unique within a DeviceManagerComponent.

3.1.3.4 Base Device

3.1.3.4.1 Interfaces
The device interfaces are for the implementation and management of logical devices within the
domain. The devices within the domain may be simple devices with no loadable, executable, or
aggregate device behavior, or devices with a combination of these behaviors. The device
interfaces are Device, LoadableDevice and ExecutableDevice.
Base Device Interfaces are implemented using interface definitions expressed in a Platform
Specific representation of one of the Appendix E enabling technologies.

10

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.4.1.1 Device
3.1.3.4.1.1.1 Description
The Device interface inherits from the LifeCycle interface. The Device interface may also inherit
from the PropertySet, TestableObject, ControllableComponent, DeviceAttributes,
CapacityManagement, ParentDevice, ManageableComponent, and PortAccessor interfaces.
The LifeCycle, PropertySet, TestableObject, ControllableComponent, DeviceAttributes,
CapacityManagement, ParentDevice, ManageableComponent, and PortAccessor interface
operations are documented in their respective sections of this document.
3.1.3.4.1.1.2 UML
The Device interface UML is depicted in Figure 3-41.

class Dev ice

«interface»
PortAccessor

«interface»
PropertySet

+ configure(Properties) :void
+ query(Properties*) :void

«interface»
TestableObj ect

+ runTest(unsigned long, Properties*) :void

+ connectUsesPorts(Connections) :void
+ disconnectPorts(Disconnections) :void
+ getProvidesPorts(Connections*) :void

CONFIGURABLE

T EST ABLE

«interface»
ManageableComponent

+ adminState :AdminType

CONNECT ABLE

«interface»
Dev iceAttributes

+ operationalState :OperationalType
+ softwareProfile :string

MANAGEABLE

«interface»

ControllableComponent

+ started :boolean

+ start() :void
+ stop() :void

CONT ROLLABLE

«interface»
LifeCycle

+ initialize() :void
+ releaseObject() :void

INT ERROGABLE

«interface»
CapacityManagement

+ usageState :UsageType

+ allocateCapacity(Properties) :boolean
+ deallocateCapacity(Properties) :void

«interface»
Dev ice

ALLOCAT ABLE

AGGREGAT ABLE

«interface»
ParentDev ice

+ compositeDevice :AggregateDevice

Figure 3-41: Device Interface UML

3.1.3.4.1.1.3 Types
N/A.
3.1.3.4.1.1.4 Attributes
N/A.

100

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.4.1.1.5 Operations
3.1.3.4.1.1.5.1 releaseObject
3.1.3.4.1.1.5.1.1 Description
This section describes additional release behavior for a logical device.
3.1.3.4.1.1.5.1.2 Synopsis
void releaseObject() raises (ReleaseError);
3.1.3.4.1.1.5.1.3 Behavior
The following behavior extends the LifeCycle::releaseObject operation requirements (see section
3.1.3.2.1.3.5.2).
SCA241 The releaseObject operation shall unregister its device from its
DeviceManagerComponent.
Figure 3-42 depicts a release scenario for removal of a child device as follows:

1. Invoke releaseObject operation on child device.
2. Remove child device from its parent.
3. Unregister child device from its associated componentRegistry instance.
4. Terminate processes / threads associated with the child device.

sd Release Child Dev ice Scenario

Child Device Parent Device

User

«interface»
:Device

«interface»
:AggregateDevice

«interface» OS
:FullComponentRegistry

releaseObject()

removeDevice(string)

unregisterComponent(string)

terminate device process / threads

For this scenario, the child device's adminState = LOCKED.

After the device is removed from the OE,
its process / threads can be terminated.
How a device indicates to its process /
thread to terminate is implementation
specific.

Figure 3-42: Release Child Device Scenario

Figure 3-43 depicts a release scenario for removal of a parent device as follows:

101

SCA Specification Version: 4.0.1
01 October 2012

1. Invoke releaseObject operation on parent device.
2. Obtain list of child devices from the parent device’s compositeDevice attribute.
3. Remove all of the parent device’s child devices (see Figure 3-42).
4. Unregister parent device from its associated componentRegistry instance.
5. Terminate processes / threads associated with the parent device.

sd Release Parent Dev ice Scenario

Parent Device Child Device

User

«interface»
:Device

«interface»
:Device

«interface» OS
FullComponentRegistry

releaseObject()

«interface»
:AggregateDevice

Obtain list of child devices
from the parent device's
compositeDevice attribute.

releaseObject()

Reference "Child Device
Scenario" for behavior (repeat
for each child device).

unregisterComponent(string)

terminate device process / threads

After the device is removed from the OE, its
process / threads can be terminated. How a
device indicates to its process / thread to
terminate is implementation specific.

Figure 3-43: Release Parent Device Scenario

3.1.3.4.1.1.5.1.4 Returns
The releaseObject operation does not return a value.
3.1.3.4.1.1.5.1.5 Exceptions/Errors
The releaseObject operation raises the ReleaseError exception when releaseObject is not
successful in releasing a logical device due to internal processing errors that occurred within the
device being released. See section 3.1.3.2.1.3.5.2.5 for exception handling.

102

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.4.1.2 ManageableComponent
3.1.3.4.1.2.1 Description
The ManageableComponent interface defines an administrative attribute for any logical device
in the domain. A logical device provides the adminState attribute, which describes the
administrative state of the device.
3.1.3.4.1.2.2 UML
The ManageableComponent interface UML is depicted in Figure 3-44.

class ManageableComponent

«interface»

ManageableComponent

+ adminState :AdminT ype

Figure 3-44: ManageableComponent Interface UML

3.1.3.4.1.2.3 Types
3.1.3.4.1.2.3.1 AdminType
This is an IDL enumeration type that defines a device's administrative states. The administrative
state indicates the permission to use or prohibition against using the device.
enum AdminType
{

LOCKED,
SHUTTING_DOWN,
UNLOCKED

};
3.1.3.4.1.2.4 Attributes
3.1.3.4.1.2.4.1 adminState
SCA243 The adminState attribute shall return the device's admin state value.
SCA244 The adminState attribute shall only allow the setting of LOCKED and UNLOCKED
values, where setting LOCKED is only effective when the adminState attribute value is
UNLOCKED, and setting UNLOCKED is only effective when the adminState attribute value is
LOCKED or SHUTTING_DOWN. Illegal state transition commands are ignored.
attribute AdminType adminState;
3.1.3.4.1.2.5 Operations
N/A.
3.1.3.4.1.3 CapacityManagement
3.1.3.4.1.3.1 Description
The CapacityManagement interface defines additional capabilities and an attribute for any
logical device in the domain. A logical device provides the following attribute and operations:

1. Usage State Management Attribute - This information describes the usage states of the
device.

103

SCA Specification Version: 4.0.1
01 October 2012

2. Capacity Operations - In order to use a device, certain capacities (e.g., memory,
performance, etc.) are obtained from the device. A device may have multiple capacities
which need to be allocated, since each device has its own unique capacity model which is
described in the associated software profile.

3.1.3.4.1.3.2 UML
The CapacityManagement interface UML is depicted in Figure 3-45.

class CapacityManagement

«interface»

CapacityManagement

+ usageState :UsageT ype

+ allocateCapacity(Properties) :boolean
+ deallocateCapacity(Properties) :void

Figure 3-45: CapacityManagement Interface UML

3.1.3.4.1.3.3 Types
3.1.3.4.1.3.3.1 InvalidCapacity
The InvalidCapacity exception returns the capacities that are not valid for this device.
exception InvalidCapacity {string msg; Properties capacities;};

3.1.3.4.1.3.3.2 UsageType
This is an IDL enumeration type that defines the device's usage states. The usage state indicates
which of the following states a device is in:
IDLE - not in use
ACTIVE - in use, with capacity remaining for allocation, or
BUSY - in use, with no capacity remaining for allocation
enum UsageType
{

IDLE,
ACTIVE,
BUSY

};
3.1.3.4.1.3.4 Attributes
3.1.3.4.1.3.4.1 usageState.
SCA248 The readonly usageState attribute shall return the device's usage state (IDLE, ACTIVE,
or BUSY). UsageState indicates whether or not a device is actively in use at a specific instant,
and if so, whether or not it has spare capacity for allocation at that instant.
readonly attribute UsageType usageState;
3.1.3.4.1.3.5 Operations
3.1.3.4.1.3.5.1 allocateCapacity
3.1.3.4.1.3.5.1.1 Brief Rationale

104

SCA Specification Version: 4.0.1
01 October 2012

The allocateCapacity operation provides the mechanism to request and allocate capacity from
the device.
3.1.3.4.1.3.5.1.2 Synopsis
boolean allocateCapacity (in Properties capacities) raises
(InvalidCapacity, InvalidState);
3.1.3.4.1.3.5.1.3 Behavior
SCA250 The allocateCapacity operation shall reduce the current capacities of the device based
upon the input capacities parameter, when usageState attribute is not BUSY.
SCA251 The allocateCapacity operation shall set the device's usageState attribute to BUSY,
when the device determines that it is not possible to allocate any further capacity. SCA252 The
allocateCapacity operation shall set the usageState attribute to ACTIVE, when capacity is being
used and any capacity is still available for allocation.
SCA253 The allocateCapacity operation shall only accept properties for the input capacities
parameter which are simple properties whose kindtype is allocation and whose action element is
external contained in the component's SPD.
3.1.3.4.1.3.5.1.4 Returns
SCA254 The allocateCapacity operation shall return TRUE, if the capacities have been
allocated, or FALSE, if not allocated.
3.1.3.4.1.3.5.1.5 Exceptions/Errors
SCA255 The allocateCapacity operation shall raise the InvalidCapacity exception, when the
input capacities parameter contains invalid properties or when attributes of those CF Properties
contain an unknown id or a value of the wrong data type.
3.1.3.4.1.3.5.2 deallocateCapacity
3.1.3.4.1.3.5.2.1 Brief Rationale
The deallocateCapacity operation provides the mechanism to return capacities back to the
device, making them available to other users.
3.1.3.4.1.3.5.2.2 Synopsis
void deallocateCapacity (in Properties capacities) raises
(InvalidCapacity, InvalidState);
3.1.3.4.1.3.5.2.3 Behavior
SCA257 The deallocateCapacity operation shall increment the current capacities of the device
based upon the input capacities parameter.
SCA258 The deallocateCapacity operation shall set the usageState attribute to ACTIVE when,
after adjusting capacities, any of the device's capacities are still being used.
SCA259 The deallocateCapacity operation shall set the usageState attribute to IDLE when, after
adjusting capacities, none of the device's capacities are still being used.

105

SCA Specification Version: 4.0.1
01 October 2012

stm State Transition Diagram for allocateCapacity and deallocateCapacity

Initial

IDLE

[all capacities unused]
[capacities in use and available]

ACTIVE

[all capacities unused] [no available capacity]

[capacities in use and available]
[no available capacity]

BUSY

Figure 3-46: State Transition Diagram for allocateCapacity and deallocateCapacity

3.1.3.4.1.3.5.2.4 Returns
This operation does not return any value.
3.1.3.4.1.3.5.2.5 Exceptions/Errors
SCA261 The deallocateCapacity operation shall raise the InvalidCapacity exception, when the
capacity ID is invalid or the capacity value is the wrong type. The InvalidCapacity exception
msg parameter describes the reason for the exception.
3.1.3.4.1.4 DeviceAttributes
3.1.3.4.1.4.1 Description
The DeviceAttributes interface inherits the ComponentIdentifier interface.
The DeviceAttributes interface defines attributes for any logical device in the domain. A logical
device may provide the following attributes:

1. Software Profile Attribute - Either the filename of the SPD or the raw SPD that defines
the logical device capabilities (data/command uses and provides ports, configure and
query properties, capacity properties, status properties, etc.), which could be a subset of
the hardware device's capabilities

2. Operational State Management - This information describes the operational states of the
device.

3.1.3.4.1.4.2 UML
The DeviceAttributes interface UML is depicted in Figure 3-41.

106

SCA Specification Version: 4.0.1
01 October 2012

class Dev iceAttributes

«interface»

ComponentIdentifier

+ identifier :string

«interface»
Dev iceAttributes

+ operationalState :OperationalType
+ softwareProfile :string

Figure 3-47: DeviceAttributes Interface UML

3.1.3.4.1.4.3 Types
3.1.3.4.1.4.3.1 OperationalType
This is an IDL enumeration type that defines a device's operational states. The operational state
indicates whether or not the object is functioning.
enum OperationalType
{

ENABLED,
DISABLED

};
3.1.3.4.1.4.4 Attributes
3.1.3.4.1.4.4.1 operationalState
SCA263 The readonly operationalState attribute shall return the device's operational state
(ENABLED or DISABLED). The operational state indicates whether or not the device is active.
readonly attribute OperationalType operationalState;
3.1.3.4.1.4.4.2 softwareProfile
SCA265 The readonly softwareProfile attribute shall return either the device's SPD filename or
the SPD itself. The filename is an absolute pathname relative to a mounted
FileSystemComponent and the file is obtained via the DomainManagerComponent's
FileManagerComponent.
readonly attribute string softwareProfile;
3.1.3.4.1.4.5 Operations
N/A.

107

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.4.1.5 ParentDevice
3.1.3.4.1.5.1 Description
The ParentDevice interface defines attributes for any logical device in the domain. A logical
device may provide the compositeDevice attribute which contains a reference to a component
that aggregates a sequence of child devices.
3.1.3.4.1.5.2 UML
The ParentDevice interface UML is depicted in Figure 3-48.

class ParentDev ice

«interface»

ParentDev ice

+ compositeDevice :AggregateDevice

Figure 3-48: ParentDevice Interface UML

3.1.3.4.1.5.3 Types
N/A
3.1.3.4.1.5.4 Attributes
3.1.3.4.1.5.4.1 compositeDevice
SCA266 The readonly compositeDevice attribute shall return the object reference of the
AggregateDeviceComponent. SCA267 The readonly compositeDevice attribute shall return a nil
object reference when this ComponentBaseDevice is not a parent.
readonly attribute AggregateDevice compositeDevice;
3.1.3.4.1.5.5 Operations
N/A
3.1.3.4.1.6 LoadableDevice
3.1.3.4.1.6.1 Description
The LoadableDevice interface inherits the LifeCycle and LoadableObject interfaces. The
LoadableDevice interface may also inherit the PropertySet, TestableObject,
ControllableComponent, LoadableObject, DeviceAttributes, CapacityManagement,
ManageableComponent, ParentDevice, and PortAccessor interfaces.
3.1.3.4.1.6.2 UML
The LoadableDevice interface UML is depicted in Figure 3-49.

108

SCA Specification Version: 4.0.1
01 October 2012

class LoadableDev ice

«interface»

LoadableObj ect

+ load(FileSystem, string, LoadT ype) :void
+ unload(string) :void

«interface»
LifeCycle

«interface»
Dev iceAttributes

+ operationalState :OperationalT ype
+ softwareProfile :string

+ initialize() :void
+ releaseObject() :void

«interface»
PropertySet

+ configure(Properties) :void
+ query(Properties*) :void

INT ERROGABLE

«interface»
PortAccessor

+ connectUsesPorts(Connections) :void
+ disconnectPorts(Disconnections) :void
+ getProvidesPorts(Connections*) :void

«interface»

CONFIGURABLE

CONNECT ABLE

ManageableComponent

+ adminState :AdminT ype

«interface»
TestableObj ect

+ runT est(unsigned long, Properties*) :void

«interface»
CapacityManagement

+ usageState :UsageT ype

MANAGEABLE

T EST ABLE

«interface»
ControllableComponent

+ started :boolean

+ allocateCapacity(Properties) :boolean
+ deallocateCapacity(Properties) :void

+ start() :void
+ stop() :void

ALLOCAT ABLE

«interface»
LoadableDev ice

CONT ROLLABLE

AGGREGAT ABLE

«interface»
ParentDev ice

+ compositeDevice :AggregateDevice

Figure 3-49: LoadableDevice Interface UML

3.1.3.4.1.6.3 Types
N/A
3.1.3.4.1.6.4 Attributes
N/A
3.1.3.4.1.6.5 Operations
3.1.3.4.1.6.5.1 releaseObject
See the Device interface's section for a description of the releaseObject operation (section
3.1.3.4.1.1.5.1) and its expected behavior.

109

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.4.1.7 LoadableObject
3.1.3.4.1.7.1 Description
This interface extends the LoadableDevice interface by adding software loading and unloading
behavior to a device.
3.1.3.4.1.7.2 UML
The LoadableObject interface UML is depicted in Figure 3-50.

class LoadableObj ect

«interface»

LoadableObj ect

+ load(FileSystem, string, LoadType) :void
+ unload(string) :void

Figure 3-50: LoadableObject Interface UML

3.1.3.4.1.7.3 Types
3.1.3.4.1.7.3.1 LoadType
The LoadType defines the type of load to be performed. The load types are in accordance with
the code element within the softpkg element's implementation element, which is defined in
Appendix D-1.1.1.6.
enum LoadType
{

KERNEL_MODULE,
DRIVER,
SHARED_LIBRARY,
EXECUTABLE

};
3.1.3.4.1.7.3.2 InvalidLoadKind
The InvalidLoadKind exception indicates that the loadable device is unable to load the type of
file designated by the loadKind parameter.
exception InvalidLoadKind{};
3.1.3.4.1.7.3.3 LoadFail
The LoadFail exception indicates that the load operation failed due to device dependent reasons.
The LoadFail exception indicates that an error occurred during an attempt to load the input file
onto the loadable device. The error number indicates a CF ErrorNumberType. The message is
component-dependent, providing additional information describing the reason for the error.
exception LoadFail { ErrorNumberType errorNumber; string msg; };
3.1.3.4.1.7.4 Attributes
N/A

110

SCA Specification Version: 4.0.1

3.1.3.4.1.7.5 Operations
3.1.3.4.1.7.5.1 load
3.1.3.4.1.7.5.1.1 Brief Rationale

01 October 2012

The load operation provides the mechanism for loading software on a loadable device. The
loaded software may be subsequently executed on the device, if the device is an executable
device.
3.1.3.4.1.7.5.1.2 Synopsis
void load (in FileSystem fs, in string fileName, in LoadType
loadKind) raises (InvalidState, InvalidLoadKind,
InvalidFileName, LoadFail);
3.1.3.4.1.7.5.1.3 Behavior
SCA268 The load operation shall load the file identified by the input fileName parameter on the
ComponentBaseDevice based upon the input loadKind parameter. The input fileName
parameter is a pathname relative to the file system identified by the input fs parameter
SCA269 Multiple loads of the same file as indicated by the input fileName parameter shall not
result in an exception. However, the load operation should account for this multiple load so that
the unload operation behavior can be performed.
3.1.3.4.1.7.5.1.4 Returns
This operation does not return any value.
3.1.3.4.1.7.5.1.5 Exceptions/Errors
SCA271 The load operation shall raise the InvalidLoadKind exception when the input loadKind
parameter is not supported.
SCA272 The load operation shall raise the CF InvalidFileName exception when the file
designated by the input fileName parameter cannot be found.
SCA273 The load operation shall raise the LoadFail exception when an attempt to load the
device is unsuccessful.
3.1.3.4.1.7.5.2 unload
3.1.3.4.1.7.5.2.1 Brief Rationale
The unload operation provides the mechanism to unload software that is currently loaded.
3.1.3.4.1.7.5.2.2 Synopsis
void unload (in string fileName) raises (InvalidState,
InvalidFileName);
3.1.3.4.1.7.5.2.3 Behavior
SCA274 The unload operation shall unload the file identified by the input fileName parameter
from the loadable device when the number of unload requests matches the number of load
requests for the indicated file.
3.1.3.4.1.7.5.2.4 Returns
This operation does not return a value.
3.1.3.4.1.7.5.2.5 Exceptions/Errors
SCA276 The unload operation shall raise the CF InvalidFileName exception when the file
designated by the input fileName parameter cannot be found.

111

SCA Specification Version: 4.0.1

3.1.3.4.1.8 ExecutableDevice
3.1.3.4.1.8.1 Description

01 October 2012

This interface provides execute and terminate behavior for a device. The ExecutableDevice
interface inherits from the LifeCycle and LoadableObject interfaces. The ExecutableDevice
interface may also inherit from the PropertySet, TestableObject, ControllableComponent,
DeviceAttributes, CapacityManagement, ManageableComponent, ParentDevice, and
PortAccessor interfaces.
3.1.3.4.1.8.2 UML
The ExecutableDevice interface UML is depicted in Figure 3-51.

class ExecutableDev ice

«interface»
LoadableObj ect

+ load(FileSystem, string, LoadT ype) :void
+ unload(string) :void

«interface»

Dev iceAttributes

+ operationalState :OperationalT ype
+ softwareProfile :string

«interface»
PropertySet

+ configure(Properties) :void
+ query(Properties*) :void

«interface»
LifeCycle

+ initialize() :void
+ releaseObject() :void

INT ERROGABLE CONFIGURABLE

«interface»

PortAccessor

«interface»
TestableObj ect

«interface»
ManageableComponent

+ adminState :AdminT ype

+ connectUsesPorts(Connections) :void
+ disconnectPorts(Disconnections) :void
+ getProvidesPorts(Connections*) :void

+ runT est(unsigned long, Properties*) :void

MANAGEABLE

CONNECT ABLE

T EST ABLE

«interface»
ControllableComponent

«interface»
CapacityManagement

+ usageState :UsageT ype

+ started :boolean

+ start() :void
+ stop() :void

+ allocateCapacity(Properties) :boolean
+ deallocateCapacity(Properties) :void

ALLOCAT ABLE

«interface»
ExecutableDev ice

+ PRIORIT Y_ID :string = "PRIORIT Y" {readOnly}
+ ST ACK_SIZE_ID :string = "ST ACK_SIZE" {readOnly}

CONT ROLLABLE

AGGREGAT ABLE

«interface»
ParentDev ice

+ compositeDevice :AggregateDevice

+ execute(string, Properties, Properties) :ProcessID_T ype
+ terminate(ProcessID_T ype) :void

Figure 3-51: ExecutableDevice Interface UML

3.1.3.4.1.8.3 Types
3.1.3.4.1.8.3.1 InvalidProcess
The InvalidProcess exception indicates that a process, as identified by the processId parameter,
does not exist on this device. The errorNumber parameter indicates a CF ErrorNumberType
value. The message is component-dependent, providing additional information describing the
reason for the error.
exception InvalidProcess { ErrorNumberType errorNumber; string
msg; };

112

SCA Specification Version: 4.0.1

3.1.3.4.1.8.3.2 InvalidFunction

01 October 2012

The InvalidFunction exception indicates that a function, as identified by the input name
parameter, hasn't been loaded on this device.
exception InvalidFunction{};
3.1.3.4.1.8.3.3 ProcessID_Type
The ProcessID_Type defines a process number within the system. The process number is unique
to the processor operating system that created the process.
typedef long ProcessID_Type;
3.1.3.4.1.8.3.4 InvalidParameters
The InvalidParameters exception indicates the input parameters are invalid on the execute
operation. The InvalidParameters exception is raised when there are invalid execute parameters.
The invalidParms parameter is a list of invalid parameters specified in the execute operation.
exception InvalidParameters { Properties invalidParms; };
3.1.3.4.1.8.3.5 InvalidOptions
The InvalidOptions exception indicates the input options are invalid on the execute operation.
The invalidOpts parameter is a list of invalid options specified in the execute operation.
exception InvalidOptions { Properties invalidOpts; };
3.1.3.4.1.8.3.6 STACK_SIZE_ID
The STACK_SIZE_ID is the identifier for the execute operation options parameter. SCA277 The
value for a stack size shall be an unsigned long.
const string STACK_SIZE_ID = "STACK_SIZE";
3.1.3.4.1.8.3.7 PRIORITY_ID
The PRIORITY_ID is the identifier for the execute operation options parameters. SCA278 The
value for a priority shall be an unsigned long.
const string PRIORITY_ID = "PRIORITY";
3.1.3.4.1.8.3.8 ExecuteFail
The ExecuteFail exception indicates that the execute operation failed due to device dependent
reasons. The ExecuteFail exception indicates that an error occurred during an attempt to invoke
the operating system "execute/thread" function on the device. The error number indicates a CF
ErrorNumberType value. The message is component-dependent, providing additional
information describing the reason for the error.
exception ExecuteFail { ErrorNumberType errorNumber; string msg;
};
3.1.3.4.1.8.4 Attributes
N/A.
3.1.3.4.1.8.5 Operations
3.1.3.4.1.8.5.1 execute
3.1.3.4.1.8.5.1.1 Brief Rationale
The execute operation provides the mechanism for starting up and executing a software
process/thread on a device.
3.1.3.4.1.8.5.1.2 Synopsis

113

SCA Specification Version: 4.0.1
01 October 2012

ProcessID_Type execute (in string name, in Properties options,
in Properties parameters) raises (InvalidState, InvalidFunction,
InvalidParameters, InvalidOptions, InvalidFileName,
ExecuteFail);
3.1.3.4.1.8.5.1.3 Behavior
SCA279 The execute operation shall execute the function or file identified by the input name
parameter using the input parameters and options parameters. Whether the input name
parameter is a function or a file name is device-implementation-specific.
SCA280 The execute operation shall map the input parameters (id/value string pairs) parameter
as an argument to the operating system "execute/thread" function. The argument (e.g. argv) is an
array of character pointers to null-terminated strings where the last member is a null pointer and
the first element is the input name parameter. Thereafter the second element is mapped to the
input parameters[0] id, the third element is mapped to the input parameters[0] value and so forth
until the contents of the input parameters parameter are exhausted.
The execute operation input options parameters are STACK_SIZE_ID and PRIORITY_ID.
SCA281 The execute operation shall use these options, when specified, to set the operating
system's process/thread stack size and priority, for the executable image of the given input name
parameter.
3.1.3.4.1.8.5.1.4 Returns
SCA282 The execute operation shall return a unique process ID for the process that it created.
3.1.3.4.1.8.5.1.5 Exceptions/Errors
SCA284 The execute operation shall raise the InvalidFunction exception when the function
indicated by the input name parameter does not exist for the device to be executed.
SCA285 The execute operation shall raise the CF InvalidFileName exception when the file name
indicated by the input name parameter does not exist for the device to be executed.
SCA286 The execute operation shall raise the InvalidParameters exception when the input
parameter ID or value attributes are not valid strings.
SCA287 The execute operation shall raise the InvalidOptions exception when the input options
parameter does not comply with sections 3.1.3.4.1.8.3.6 STACK_SIZE_ID and 3.1.3.4.1.8.3.7
PRIORITY_ID.
SCA288 The execute operation shall raise the ExecuteFail exception when the operating system
"execute/thread" function is not successful.
3.1.3.4.1.8.5.2 terminate
3.1.3.4.1.8.5.2.1 Brief Rationale
The terminate operation provides the mechanism for terminating the execution of a
process/thread on a specific device that was started up with the execute operation.
3.1.3.4.1.8.5.2.2 Synopsis
void terminate (in ProcessID_Type processId) raises
(InvalidProcess, InvalidState);
3.1.3.4.1.8.5.2.3 Behavior
SCA289 The terminate operation shall terminate the execution of the process/thread designated
by the processId input parameter on the device to be executed.

114

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.4.1.8.5.2.4 Returns
This operation does not return a value.
3.1.3.4.1.8.5.2.5 Exceptions/Errors
SCA291 The terminate operation shall raise the InvalidProcess exception when the process Id
does not exist for the device.
3.1.3.4.1.8.5.3 releaseObject
See the Device interface's section regarding the releaseObject operation (section 3.1.3.4.1.1.5.1)
for release description and behavior.
3.1.3.4.1.9 AggregateDevice
3.1.3.4.1.9.1 Description
The AggregateDevice interface provides the required behavior that is needed to add and remove
child devices from a parent device. This interface may be provided via inheritance or as a
provides port for any device that is used as a parent device. Child devices use this interface to
add or remove themselves to a parent device when being created or torn-down.
3.1.3.4.1.9.2 UML
The AggregateDevice interface UML is depicted in Figure 3-52.

class AggregateDev ice

«interface»

AggregateDev ice

+ devices :ObjectSequence

+ addDevice(Object, string) :void
+ removeDevice(string) :void

Figure 3-52: AggregateDevice Interface UML

3.1.3.4.1.9.3 Types
N/A.
3.1.3.4.1.9.4 Attributes
3.1.3.4.1.9.4.1 devices
SCA292 The readonly devices attribute shall return a list of devices that have been added to this
device or a sequence length of zero if the device has no aggregation relationships with other
devices.
readonly attribute ObjectSequence devices;
3.1.3.4.1.9.5 Operations
3.1.3.4.1.9.5.1 addDevice
3.1.3.4.1.9.5.1.1 Brief Rationale
The addDevice operation provides the mechanism to associate a device with another device.
When a device changes state or it is being torn down, its associated devices are affected.
3.1.3.4.1.9.5.1.2 Synopsis

115

SCA Specification Version: 4.0.1
01 October 2012

void addDevice (in Object associatedDevice, string identifier)
raises (InvalidObjectReference);
3.1.3.4.1.9.5.1.3 Behavior
SCA293 The addDevice operation shall add the input associatedDevice parameter to the
AggregateDevice's devices attribute when the associatedDevice associated with the input
identifier parameter does not exist in the devices attribute. The associatedDevice is ignored when
the identifier duplicated.
3.1.3.4.1.9.5.1.4 Returns
This operation does not return any value.
3.1.3.4.1.9.5.1.5 Exceptions/Errors
SCA295 The addDevice operation shall raise the CF InvalidObjectReference when the input
associatedDevice parameter is a nil object reference.
SCA531 The addDevice operation shall raise the CF InvalidObjectReference if the component
represented within the input associatedDevice parameter does not realize the Device,
LoadableDevice or ExecutableDevice interface.
3.1.3.4.1.9.5.2 removeDevice
3.1.3.4.1.9.5.2.1 Brief Rationale
The removeDevice operation provides the mechanism to disassociate a device from another
device.
3.1.3.4.1.9.5.2.2 Synopsis
void removeDevice (in string identifier) raises
(InvalidObjectReference);
3.1.3.4.1.9.5.2.3 Behavior
SCA296 The removeDevice operation shall remove the device that corresponds to the input
identifier parameter from the AggregateDevice's devices attribute.
3.1.3.4.1.9.5.2.4 Returns
This operation does not return any value.
3.1.3.4.1.9.5.2.5 Exceptions/Errors
SCA297 The removeDevice operation shall raise the CF InvalidObjectReference when the
device that corresponds to the input identifier parameter is a nil object reference or does not exist
in the AggregateDevice devices attribute.
3.1.3.4.2 Components
Base Device Components provide the structural definitions that will be utilized for the
implementation and management of physical devices within the domain. The physical devices
within the domain may be simple devices with no loadable, executable, or aggregate device
behavior, or devices with a combination of these behaviors.
3.1.3.4.2.1 ComponentBaseDevice
3.1.3.4.2.1.1 Description
A ComponentBaseDevice is an abstract component that extends ComponentBase.
ComponentBaseDevice contains the core associations and requirements that are used by the SCA
device oriented components (DeviceComponent, LoadableDeviceComponent and

116

SCA Specification Version: 4.0.1
01 October 2012

ExecutableDeviceComponent). This abstraction is necessary because even though the
corresponding interfaces for those components do not share an inheritance relationship among
themselves they share a common collection of interfaces. This secondary relationship allows the
components to have the same baseline capabilities.

cmp ComponentBaseDev ice

«interface»
CF::Dev iceAttributes

«interface»

CF::ManageableComponent

«interface»

CF::CapacityManagement

+ operationalState :OperationalT ype
+ softwareProfile :string

+ adminState :AdminT ype

+ usageState :UsageT ype

+ allocateCapacity(Properties) :boolean
+ deallocateCapacity(Properties) :void

PlatformComponent

«interface»
CF::ParentDev ice

INT ERROGABLE

MANAGEABLE

ALLOCAT ABLE

ComponentBase

+connectedComponent *

«connects»

+ compositeDevice :AggregateDevice

ComponentBaseDev ice

*

«registers»

*

«aggregates»

+componentRegistry 0..*

+componentAggregator 0..*

«interface»

:ComponentRegistry AggregateDev iceComponent

Figure 3-53: ComponentBaseDevice UML

3.1.3.4.2.1.2 Associations

• componentRegistry: A ComponentBaseDevice registers and unregisters with a
DeviceManagerComponent via a componentRegistry upon creation.

• componentAggregator: A ComponentBaseDevice associates and disassociates itself with
another ComponentBaseDevice via an AggregateDeviceComponent.

3.1.3.4.2.1.3 Semantics
A ComponentBaseDevice is a functional abstraction for a set (e.g., zero or more) of physical
hardware devices and includes a collection of capability and capacity properties.
ComponentBaseDevices communicate with a physical hardware devices via device drivers. They
are typically used by applications but there is nothing restricting them being utilized by any other
type of platform component.
SCA298 A ComponentBaseDevice shall register with its launching DeviceManagerComponent
via the ComponentRegistry::registerComponent operation. SCA458 A child
ComponentBaseDevice shall add itself to a parent device using the executable Composite Device
IOR and DEVICE_ID parameters per 3.1.3.3.2.5.3. SCA299 The values associated with the
parameters (PROFILE_NAME, COMPOSITE_DEVICE_IOR, and DEVICE_ID) as described in
3.1.3.3.2.5.3 shall be used to set the ComponentBaseDevice's softwareProfile, compositeDevice,
and identifier attributes, respectively.

117

SCA Specification Version: 4.0.1
01 October 2012

Each ComponentBaseDevice may have a DPD as described in 3.1.3.6. For each
ComponentBaseDevice, allocation properties should be defined in its referenced SPD's property
file.
3.1.3.4.2.1.3.1 State Model Behavior
SCA237 The releaseObject operation shall assign the LOCKED state to the adminState attribute,
when the adminState attribute is UNLOCKED.
SCA238 The releaseObject operation shall call the releaseObject operation on all of the
ComponentBaseDevices contained within its referenced AggregateDeviceComponent when the
ComponentBaseDevice is a parent device.
SCA239 The releaseObject operation shall cause the removal of a ComponentBaseDevice from
the referenced AggregateDeviceComponent of its parent when this ComponentBaseDevice is a
child device.
SCA240 The releaseObject operation shall cause the device to be unavailable and released from
the operating environment when the adminState attribute transitions to LOCKED. The transition
to the LOCKED state signifies that the usageState attribute is IDLE and, if the device is a parent
device that its child devices have been removed.
SCA256 The allocateCapacity operation shall raise the InvalidState exception when the device's
adminState is not UNLOCKED.
SCA260 The deallocateCapacity operation shall set the adminState attribute to LOCKED as
specified in this section.
SCA262 The deallocateCapacity operation shall raise the InvalidState exception, when the
device's adminState is LOCKED.
SCA511 The allocateCapacity operation shall raise the InvalidState exception when the device's
operationalState is DISABLED.
SCA516 The deallocateCapacity operation shall raise the InvalidState exception, when the
device's operationalState is DISABLED.
SCA245 The adminState attribute, upon being commanded to be LOCKED, shall set the
adminState to LOCKED for its entire aggregation of ComponentBaseDevices (if it has any).
Refer to Figure 3-54 for an illustration of the above state behavior.
The adminState transitions to the LOCKED state when the device's usageState is IDLE and its
entire aggregation of ComponentBaseDevices are LOCKED.
SCA247 The ComponentBaseDevice shall send a StateChangeEventType event to the Incoming
Domain Management event channel, whenever the adminState attribute changes. For this event,

1. The producerId field is the identifier attribute of the device.
2. The sourceId field is the identifier attribute of the device.
3. The stateChangeCategory field is "ADMINISTRATIVE_STATE_EVENT".
4. The stateChangeFrom field is the value of the adminState attribute before the state

change.
5. The stateChangeTo field is the value of the adminState attribute after the state change.

118

SCA Specification Version: 4.0.1
01 October 2012

stm State Transition Diagram for adminState

Initial

UNLOCKED

[adminState := LOCKED]

[adminState := UNLOCKED]

[adminState := UNLOCKED]

SHUTTING_DOWN

[usageState := IDLE
adminState := UNLOCKED (child devices)]

LOCKED

Figure 3-54: State Transition Diagram for adminState
SCA249 The ComponentBaseDevice shall send a StateChangeEventType event to the Incoming
Domain Management event channel, whenever the usageState attribute changes. For this event,

1. The producerId field is the identifier attribute of the device.
2. The sourceId field is the identifier attribute of the device.
3. The stateChangeCategory field is "USAGE_STATE_EVENT".
4. The stateChangeFrom field is the value of the usageState attribute before the state

change
5. The stateChangeTo field is the value of the usageState attribute after the state change.

SCA264 The ComponentBaseDevice shall send a StateChangeEventType event to the Incoming
Domain Management event channel, whenever the operationalState attribute changes. For this
event,

1. The producerId field is the identifier attribute of the device.
2. The sourceId field is the identifier attribute of the device.
3. The stateChangeCategory field is "OPERATIONAL_STATE_EVENT".
4. The stateChangeFrom field is the value of the operationalState attribute before the state

change.
5. The stateChangeTo field is the value of the operationalState attribute after the state

change.
3.1.3.4.2.1.4 Constraints
SCA303 A ComponentBaseDevice shall fulfill the ComponentBase requirements. SCA526 A
ComponentBaseDevice shall fulfill the PlatformComponent requirements.

119

SCA Specification Version: 4.0.1
01 October 2012

SCA534 A ComponentBaseDevice shall realize the DeviceAttributes interface.
SCA535 A ComponentBaseDevice shall realize the ManageableComponent interface.
SCA536 A ComponentBaseDevice shall realize the CapacityManagement interface.
SCA539 A ComponentBaseDevice shall realize the ParentDevice interface.
3.1.3.4.2.2 DeviceComponent
3.1.3.4.2.2.1 Description
The DeviceComponent description is represented by the ComponentBaseDevice.

cmp Dev iceComponent

«interface»

CF::Dev ice ComponentBaseDev ice

Dev iceComponent

Figure 3-55: DeviceComponent UML

3.1.3.4.2.2.2 Associations
See section 3.1.3.4.2.1.2
3.1.3.4.2.2.3 Semantics
The DeviceComponent semantics are represented by the ComponentBaseDevice.
3.1.3.4.2.2.3.1 State Model Behavior
See section 3.1.3.4.2.1.3.1.
3.1.3.4.2.2.4 Constraints
SCA304 A DeviceComponent shall realize the Device interface.
SCA305 A DeviceComponent shall fulfill the ComponentBaseDevice requirements.
3.1.3.4.2.3 LoadableDeviceComponent
3.1.3.4.2.3.1 Description
The LoadableDeviceComponent extends the ComponentBaseDevice component by adding
software loading and unloading behavior.

120

SCA Specification Version: 4.0.1
01 October 2012

cmp LoadableDev iceComponent

«interface»

CF::LoadableDev ice

ComponentBaseDev ice

+fileSystem

«accesses»

0..*

LoadableDev iceComponent

0..*

«loads»

+loadedFile

«POSIX File»

FileSystemComponent 1..*
1..* File

Figure 3-56: LoadableDeviceComponent UML

3.1.3.4.2.3.2 Associations

• fileSystem: A LoadableDeviceComponent accesses FileSystemComponent(s) in order to
retrieve files which are to be loaded.

• loadedFile: A LoadableDeviceCompoment loads and unloads files into the domain.
3.1.3.4.2.3.3 Semantics
SCA306 The load operation shall support the load types as stated in the
LoadableDeviceComponent's software profile LoadType allocation properties. SCA307 When a
LoadType is not defined for the LoadableDeviceComponent, the load operation shall support all
code types.
3.1.3.4.2.3.3.1 State Model Behavior
See section 3.1.3.4.2.1.3.1.
SCA512 The load operation shall raise the InvalidState exception if upon entry the device's
operationalState attribute is DISABLED.
SCA513 The unload operation shall raise the InvalidState exception if upon entry the device's
operationalState attribute is DISABLED.
SCA270 The load operation shall raise the InvalidState exception if upon entry the device's
adminState attribute is either LOCKED or SHUTTING_DOWN.
SCA275 The unload operation shall raise the InvalidState exception if upon entry the device's
adminState attribute is LOCKED.
3.1.3.4.2.3.4 Constraints
SCA308 A LoadableDeviceComponent shall realize the LoadableDevice interface.
SCA309 A LoadableDeviceComponent shall fulfill the ComponentBaseDevice requirements.

121

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.4.2.4 ExecutableDeviceComponent
3.1.3.4.2.4.1 Description
The ExecutableDeviceComponent extends the ComponentBaseDevice by adding execute and
terminate process/thread behavior. An ExecutableDeviceComponent accepts executable
parameters as specified in the (ExecutableDevice::execute) section.

cmp ExecutableDev iceComponent

«interface»
CF::ExecutableDev ice

+ ST ACK_SIZE_ID :string = "ST ACK_SIZE" {readOnly}
+ PRIORIT Y_ID :string = "PRIORIT Y" {readOnly}

ComponentBaseDev ice

+ terminate(ProcessID_T ype) :void
+ execute(string, Properties, Properties) :ProcessID_T ype

ExecutableDev iceComponent

+fileSystem

«accesses»

0..* 0..*

«manages»

+executableArtifact

FileSystemComponent

1..*

1..*

«Artifact»

Executable Obj ect

Figure 3-57: ExecutableDeviceComponent UML

3.1.3.4.2.4.2 Associations

• executableArtifact: An ExecutableDeviceComponent loads, unloads, executes and
terminates artifact(s) (i.e. processes, executables or modules) within a processing
environment.

• fileSystem: An ExecutableDeviceCompoment accesses FileSystemComponent(s) in order
to retrieve files which are to be executed.

3.1.3.4.2.4.3 Semantics
SCA310 An ExecutableDeviceComponent shall accept the executable parameters as specified in
section 3.1.3.4.1.8.5.1.3 (ExecutableDevice::execute).
See section 3.1.3.4.2.3.3.
3.1.3.4.2.4.3.1 State Model Behavior
SCA283 The execute operation shall raise the InvalidState exception if upon entry the device's
adminState attribute is either LOCKED or SHUTTING_DOWN.

122

SCA Specification Version: 4.0.1

01 October 2012
SCA514 The execute operation shall raise the InvalidState exception if upon entry the device's
operationalState attribute is DISABLED.
SCA290 The terminate operation shall raise the InvalidState exception if upon entry the device's
adminState attribute is LOCKED.
SCA515 The terminate operation shall raise the InvalidState exception if upon entry the device's
operationalState attribute is DISABLED.
3.1.3.4.2.4.4 Constraints
SCA311 An ExecutableDeviceComponent shall realize the ExecutableDevice interface.
SCA312 An ExecutableDeviceComponent shall fulfill the ComponentBaseDevice requirements.
3.1.3.4.2.5 AggregateDeviceComponent
3.1.3.4.2.5.1 Description
An AggregateDeviceComponent provides behavior to add and remove child
ComponentBaseDevices from a parent ComponentBaseDevice. Child ComponentBaseDevices
are provided with and use a reference to an AggregateDeviceComponent to introduce or remove
an association between themselves and a parent ComponentBaseDevice that manages the
composition. When a parent ComponentBaseDevice changes state or is released, its associated
ComponentBaseDevices change correspondingly.

cmp AggregateDev iceComponent

«interface»
CF::AggregateDev ice

+ devices :ObjectSequence

+ addDevice(Object, string) :void
+ removeDevice(string) :void

AggregateDev iceComponent

+aggregatedElements

ComponentBaseDev ice
0..* «maintains» 0..*

Figure 3-58: AggregateDeviceComponent UML

3.1.3.4.2.5.2 Associations

• aggregatedElements: An AggregateDeviceComponent manages, adds and deletes,
ComponentBaseDevice(s) that are children of its associated ComponentBaseDevice.

3.1.3.4.2.5.3 Semantics
N/A
3.1.3.4.2.5.4 Constraints
SCA313 An AggregateDeviceComponent shall realize the AggregateDevice interface.

123

SCA Specification Version: 4.0.1

3.1.3.5 Framework Services

3.1.3.5.1 Interfaces

01 October 2012

Framework Services Interfaces are implemented using interface definitions expressed in a
Platform Specific representation of one of the Appendix E enabling technologies.
3.1.3.5.1.1 File
3.1.3.5.1.1.1 Description
The File interface provides the ability to read and write files residing within a compliant,
distributed file system. The File interface is modeled after the POSIX/C file interface.
3.1.3.5.1.1.2 UML

class File

«interface»

File

+ fileName :string
+ filePointer :unsigned long

+ read(OctetSequence*, unsigned long) :void
+ write(OctetSequence) :void
+ sizeOf() :unsigned long
+ close() :void
+ setFilePointer(unsigned long) :void

Figure 3-59: File Interface UML

3.1.3.5.1.1.3 Types
3.1.3.5.1.1.3.1 IOException
The IOException exception indicates an error occurred during a read or write operation to a file.
The error number indicates a CF ErrorNumberType value. The message is component-
dependent, providing additional information describing the reason for the error.
exception IOException { ErrorNumberType errorNumber; string msg;
};
3.1.3.5.1.1.3.2 InvalidFilePointer
The InvalidFilePointer exception indicates the file pointer is out of range based upon the current
file size.
exception InvalidFilePointer{};
3.1.3.5.1.1.4 Attributes
3.1.3.5.1.1.4.1 fileName
SCA320 The readonly fileName attribute shall return the pathname used as the input fileName
parameter of the FileSystem::create operation when the file was created.
readonly attribute string fileName;
3.1.3.5.1.1.4.2 filePointer
SCA321 The readonly filePointer attribute shall return the current file position. The filePointer
attribute value dictates where the next read or write will occur.

124

SCA Specification Version: 4.0.1

readonly attribute unsigned long filePointer;
3.1.3.5.1.1.5 Operations
3.1.3.5.1.1.5.1 read
3.1.3.5.1.1.5.1.1 Brief Rationale

01 October 2012

Applications require the read operation in order to retrieve data from remote files.
3.1.3.5.1.1.5.1.2 Synopsis
void read (out OctetSequence data, in unsigned long length)
raises (IOException);
3.1.3.5.1.1.5.1.3 Behavior
SCA322 The read operation shall read, from the referenced file, the number of octets specified
by the input length parameter and advance the value of the filePointer attribute by the number of
octets actually read. SCA323 The read operation shall read less than the number of octets
specified in the input length parameter, when an end-of-file is encountered.
3.1.3.5.1.1.5.1.4 Returns
SCA324 The read operation shall return a CF OctetSequence that equals the number of octets
actually read from the file via the out data parameter. SCA325 If the filePointer attribute value
reflects the end of the file, the read operation shall return a zero-length CF OctetSequence.
3.1.3.5.1.1.5.1.5 Exceptions/Errors
SCA326 The read operation shall raise the IOException when a read error occurs.
3.1.3.5.1.1.5.2 write
3.1.3.5.1.1.5.2.1 Brief Rationale
Applications require the write operation in order to write data to remote files.
3.1.3.5.1.1.5.2.2 Synopsis
void write (in OctetSequence data) raises (IOException);
3.1.3.5.1.1.5.2.3 Behavior
SCA327 The write operation shall write data to the file referenced. SCA328 The write operation
shall increment the filePointer attribute to reflect the number of octets written, when the
operation is successful. SCA329 If the write operation is unsuccessful, the value of the
filePointer attribute shall maintain or be restored to its value prior to the write operation call. If
the file was opened using the FileSystem::open operation with an input read_Only parameter
value of TRUE, writes to the file are considered to be in error.
3.1.3.5.1.1.5.2.4 Returns
This operation does not return any value.
3.1.3.5.1.1.5.2.5 Exceptions/Errors
SCA330 The write operation shall raise the IOException when a write error occurs.
3.1.3.5.1.1.5.3 sizeOf
3.1.3.5.1.1.5.3.1 Brief Rationale
An application may need to know the size of a file in order to determine memory allocation
requirements.
3.1.3.5.1.1.5.3.2 Synopsis

125

SCA Specification Version: 4.0.1

unsigned long sizeOf() raises (FileException);
3.1.3.5.1.1.5.3.3 Behavior

01 October 2012

There is no significant behavior beyond the behavior described by the following section.
3.1.3.5.1.1.5.3.4 Returns
SCA331 The sizeOf operation shall return the number of octets stored in the file.
3.1.3.5.1.1.5.3.5 Exceptions/Errors
SCA443 The sizeOf operation shall raise the CF FileException when a file-related error occurs
(e.g., file does not exist anymore).
3.1.3.5.1.1.5.4 close
3.1.3.5.1.1.5.4.1 Brief Rationale
The close operation is needed in order to release file resources once they are no longer needed.
3.1.3.5.1.1.5.4.2 Synopsis
void close() raises (FileException);
3.1.3.5.1.1.5.4.3 Behavior
SCA332 The close operation shall release any OE file resources associated with the component.
SCA333 The close operation shall make the file unavailable to the component.

3.1.3.5.1.1.5.4.4 Returns
This operation does not return any value.
3.1.3.5.1.1.5.4.5 Exceptions/Errors.
SCA334 The close operation shall raise the CF FileException when it cannot successfully close
the file.
3.1.3.5.1.1.5.5 setFilePointer
3.1.3.5.1.1.5.5.1 Brief Rationale
The setFilePointer operation positions the file pointer where the next read or write will occur.
3.1.3.5.1.1.5.5.2 Synopsis
void setFilePointer (in unsigned long filePointer) raises
(InvalidFilePointer, FileException);
3.1.3.5.1.1.5.5.3 Behavior
SCA335 The setFilePointer operation shall set the filePointer attribute value to the input
filePointer.
3.1.3.5.1.1.5.5.4 Returns
This operation does not return any value.
3.1.3.5.1.1.5.5.5 Exceptions/Errors
SCA336 The setFilePointer operation shall raise the CF FileException when the file pointer for
the referenced file cannot be set to the value of the input filePointer parameter.
SCA337 The setFilePointer operation shall raise the InvalidFilePointer exception when the value
of the filePointer parameter exceeds the file size.

126

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.5.1.2 FileSystem
3.1.3.5.1.2.1 Description
The FileSystem interface defines operations that enable remote access to a physical file system
(see Figure 3-60).
3.1.3.5.1.2.2 UML

class FileSystem

«interface»
FileSystem

+ SIZE :string = "SIZE" {readOnly}
+ AVAILABLE_SPACE :string = "AVAILABLE_SPACE" {readOnly}
+ CREAT ED_T IME_ID :string = "CREAT ED_T IME" {readOnly}
+ MODIFIED_T IME_ID :string = "MODIFIED_T IME" {readOnly}
+ LAST _ACCESS_T IME_ID :string = "LAST _ACCESS_T IME" {readOnly}

+ remove(string) :void
+ copy(string, string) :void
+ exists(string) :boolean
+ list(string) :FileInformationSequence
+ create(string) :File
+ open(string, boolean) :File
+ mkdir(string) :void
+ rmdir(string) :void
+ query(Properties*) :void

Figure 3-60: FileSystem Interface UML

3.1.3.5.1.2.3 Types
3.1.3.5.1.2.3.1 UnknownFileSystemProperties.
The UnknownFileSystemProperties exception indicates a set of properties unknown by the
component.
exception UnknownFileSystemProperties { properties
invalidProperties; };
3.1.3.5.1.2.3.2 fileSystemProperties Query Constants
Constants are defined to be used for the query operation (see section 3.1.3.5.1.2.5.9).
const string SIZE = "SIZE";
const string AVAILABLE_SPACE = "AVAILABLE_SPACE";
3.1.3.5.1.2.3.3 FileInformationType
The FileInformationType indicates the information returned for a file. Not all the fields in the
FileInformationType are applicable for all file systems. SCA338 At a minimum, the FileSystem
interface implementation shall support name, kind, and size information for a file. Examples of
other file properties that may be specified are created time, modified time, and last access time.
struct FileInformationType
{

string name;
FileType kind;
unsigned long long size;

127

SCA Specification Version: 4.0.1
01 October 2012

Properties fileProperties;
};
The name field of the FileInformationType struct indicates the simple name of the file. The kind
field of the FileInformationType struct indicates the type of the file entry. The size field of the
FileInformationType struct indicates the size in octets.
3.1.3.5.1.2.3.4 FileInformationSequence
The FileInformationSequence type defines an unbounded sequence of FileInformationTypes.
typedef sequence<FileInformationType>FileInformationSequence;

3.1.3.5.1.2.3.5 FileType
The FileType indicates the type of file entry. A file system may have PLAIN or DIRECTORY
files and mounted file systems contained in a file system.
enum FileType
{

PLAIN,
DIRECTORY,
FILE_SYSTEM

};
3.1.3.5.1.2.3.6 CREATED_TIME_ID
The fileProperties field of the FileInformationType struct may be used to indicate the time a file
was created. SCA445 For this property, the identifier is CREATED_TIME_ID and the value
shall be an unsigned long long data type containing the number of seconds since 00:00:00 UTC,
Jan 1, 1970.
const string CREATED_TIME_ID = "CREATED_TIME";
3.1.3.5.1.2.3.7 MODIFIED_TIME_ID
The fileProperties element of the FileInformationType struct may be used to indicate the time a
file was last modified. SCA446 For this property, the identifier is MODIFIED_TIME_ID and the
value shall be an unsigned long long data type containing the number of seconds since 00:00:00
UTC, Jan 1, 1970.
const string MODIFIED_TIME_ID="MODIFIED_TIME";
3.1.3.5.1.2.3.8 LAST_ACCESS_TIME_ID
The fileProperties element of the FileInformationType struct may be used to indicate the time a
file was last accessed. SCA447 For this property, the identifier is LAST_ACCESS_TIME_ID
and the value shall be an unsigned long long data type containing the number of seconds since
00:00:00 UTC, Jan 1, 1970.
const string LAST_ACCESS_TIME_ID="LAST_ACCESS_TIME";
3.1.3.5.1.2.4 Attributes
N/A
3.1.3.5.1.2.5 Operations
3.1.3.5.1.2.5.1 remove
3.1.3.5.1.2.5.1.1 Brief Rationale
The remove operation provides the ability to remove a plain file from a file system.
3.1.3.5.1.2.5.1.2 Synopsis

128

SCA Specification Version: 4.0.1
01 October 2012

void remove (in string fileName) raises (FileException,
InvalidFileName);
3.1.3.5.1.2.5.1.3 Behavior
SCA339 The remove operation shall remove the plain file which corresponds to the input
fileName parameter.
3.1.3.5.1.2.5.1.4 Returns
This operation does not return any value.
3.1.3.5.1.2.5.1.5 Exceptions/Errors
SCA340 The remove operation shall raise the CF InvalidFileName exception when the input
fileName parameter is not a valid absolute pathname.
SCA341 The remove operation shall raise the CF FileException when a file-related error occurs.
3.1.3.5.1.2.5.2 copy
3.1.3.5.1.2.5.2.1 Brief Rationale
The copy operation provides the ability to copy a plain file to another plain file.
3.1.3.5.1.2.5.2.2 Synopsis
void copy (in string sourceFileName, in string
destinationFileName) raises (InvalidFileName, FileException);
3.1.3.5.1.2.5.2.3 Behavior
SCA342 The copy operation shall copy the source file identified by the input sourceFileName
parameter to the destination file identified by the input destinationFileName parameter.
SCA343 The copy operation shall overwrite the destination file, when the destination file already
exists and is not identical to the source file.
3.1.3.5.1.2.5.2.4 Returns
This operation does not return any value.
3.1.3.5.1.2.5.2.5 Exceptions/Errors
SCA344 The copy operation shall raise the CF FileException exception when a file-related error
occurs.
SCA345 The copy operation shall raise the CF InvalidFileName exception when the destination
pathname is identical to the source pathname.
SCA346 The copy operation shall raise the CF InvalidFileName exception when the
sourceFileName or destinationFileName input parameter is not a valid absolute pathname.
3.1.3.5.1.2.5.3 exists
3.1.3.5.1.2.5.3.1 Brief Rationale
The exists operation provides the ability to verify the existence of a file within a file system.
3.1.3.5.1.2.5.3.2 Synopsis
boolean exists (in string fileName) raises (InvalidFileName);
3.1.3.5.1.2.5.3.3 Behavior
SCA347 The exists operation shall check to see if a file exists based on the fileName parameter.
3.1.3.5.1.2.5.3.4 Returns
SCA348 The exists operation shall return TRUE if the file exists, or FALSE if it does not.

129

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.5.1.2.5.3.5 Exceptions/Errors
SCA349 The exists operation shall raise the CF InvalidFileName exception when input fileName
parameter is not a valid absolute pathname.
3.1.3.5.1.2.5.4 list
3.1.3.5.1.2.5.4.1 Brief Rationale
The list operation provides the ability to obtain a list of files along with their information in the
file system according to a given search pattern. The list operation may be used to return
information for one file or for a set of files.
3.1.3.5.1.2.5.4.2 Synopsis
FileInformationSequence list (in string pattern) raises
(FileException, InvalidFileName);
3.1.3.5.1.2.5.4.3 Behavior
SCA448 The list operation shall support the "*" and "?" wildcard characters (used to match any
sequence of characters, including null, and any single character, respectively). SCA350 These
wildcards shall only be applied following the right-most forward-slash character ("/") in the
pathname contained in the input pattern parameter.
3.1.3.5.1.2.5.4.4 Returns
SCA351 The list operation shall return a FileInformationSequence for files that match the search
pattern specified in the input pattern parameter. SCA352 The list operation shall return a zero
length sequence when no file is found which matches the search pattern.
3.1.3.5.1.2.5.4.5 Exceptions/Errors
SCA353 The list operation shall raise the CF InvalidFileName exception when the input pattern
parameter is not an absolute pathname or cannot be interpreted due to unexpected characters.
SCA354 The list operation shall raise the CF FileException when a file-related error occurs.
3.1.3.5.1.2.5.5 create
3.1.3.5.1.2.5.5.1 Brief Rationale
The create operation provides the ability to create a new plain file on the file system.
3.1.3.5.1.2.5.5.2 Synopsis
File create (in string fileName) raises (InvalidFileName,
FileException);
3.1.3.5.1.2.5.5.3 Behavior
SCA355 The create operation shall create a new file based upon the input fileName parameter.
3.1.3.5.1.2.5.5.4 Returns
SCA356 The create operation shall return a file object reference to the created file.
3.1.3.5.1.2.5.5.5 Exceptions/Errors
SCA357 The create operation shall raise the CF FileException if the file already exists or
another file error occurred.
SCA358 The create operation shall raise the CF InvalidFileName exception when the input
fileName parameter is not a valid absolute pathname.
3.1.3.5.1.2.5.6 open
3.1.3.5.1.2.5.6.1 Brief Rationale

130

SCA Specification Version: 4.0.1

The open operation provides the ability to open a plain file for read or write.
3.1.3.5.1.2.5.6.2 Synopsis

01 October 2012

File open (in string fileName, in boolean read_Only) raises
(InvalidFileName, FileException);
3.1.3.5.1.2.5.6.3 Behavior
SCA359 The open operation shall open the file referenced by the input fileName parameter.
SCA360 The open operation shall open the file with read-only access when the input read_Only
parameter is TRUE. SCA361 The open operation shall open the file for write access when the
input read_Only parameter is FALSE.
3.1.3.5.1.2.5.6.4 Returns
SCA362 The open operation shall return a FileComponent reference for the opened file.
SCA363 The open operation shall set the filePointer attribute of the returned file instance to the
beginning of the file.
3.1.3.5.1.2.5.6.5 Exceptions/Errors
SCA364 The open operation shall raise the CF FileException if the file does not exist or another
file error occurred.
SCA365 The open operation shall raise the CF InvalidFileName exception when the input
fileName parameter is not a valid absolute pathname.
3.1.3.5.1.2.5.7 mkdir
3.1.3.5.1.2.5.7.1 Brief Rationale
The mkdir operation provides the ability to create a directory on the file system.
3.1.3.5.1.2.5.7.2 Synopsis
void mkdir (in string directoryName) raises (InvalidFileName,
FileException);
3.1.3.5.1.2.5.7.3 Behavior
SCA366 The mkdir operation shall create a file system directory based on the directoryName
given. SCA367 The mkdir operation shall create all parent directories required to create the
directoryName path given.
3.1.3.5.1.2.5.7.4 Returns.
This operation does not return any value.
3.1.3.5.1.2.5.7.5 Exceptions/Errors
SCA368 The mkdir operation shall raise the CF FileException if the directory indicated by the
input directoryName parameter already exists or if a file-related error occurred during the
operation.
SCA369 The mkdir operation shall raise the CF InvalidFileName exception when the
directoryName is not a valid directory name.
3.1.3.5.1.2.5.8 rmdir
3.1.3.5.1.2.5.8.1 Brief Rationale
The rmdir operation provides the ability to remove a directory from the file system.
3.1.3.5.1.2.5.8.2 Synopsis

131

SCA Specification Version: 4.0.1
01 October 2012

void rmdir (in string directoryName) raises (InvalidFileName,
FileException);
3.1.3.5.1.2.5.8.3 Behavior
SCA370 The rmdir operation shall remove the directory identified by the input directoryName
parameter.
SCA371 The rmdir operation shall not remove the directory identified by the input
directoryName parameter when the directory contains files.
3.1.3.5.1.2.5.8.4 Returns
This operation does not return any value.
3.1.3.5.1.2.5.8.5 Exceptions/Errors
SCA372 The rmdir operation shall raise the CF FileException when the directory identified by
the input directoryName parameter does not exist, the directory contains files, or an error occurs
which prohibits the directory from being deleted.
SCA373 The rmdir operation shall raise the CF InvalidFileName exception when the input
directoryName parameter is not a valid path prefix.
3.1.3.5.1.2.5.9 query
3.1.3.5.1.2.5.9.1 Brief Rationale
The query operation provides the ability to retrieve information about a file system.
3.1.3.5.1.2.5.9.2 Synopsis
void query (inout Properties fileSystemProperties) raises
(UnknownFileSystemProperties);
3.1.3.5.1.2.5.9.3 Behavior
SCA374 The query operation shall return file system information to the calling client based upon
the given fileSystemProperties' ID.
SCA440 The FileSystem::query operation shall recognize and provide the designated return
values for the following fileSystemProperties (section 3.1.3.5.1.2.3.2):

1. SIZE - an ID value of "SIZE" causes the query operation to return an unsigned long long
containing the file system size (in octets);

2. AVAILABLE_SPACE - an ID value of "AVAILABLE_SPACE" causes the query
operation to return an unsigned long long containing the available space on the file
system (in octets).

See section 3.1.3.5.1.2.3.2 for the constants for the fileSystemProperties.
3.1.3.5.1.2.5.9.4 Returns
This operation does not return any value.
3.1.3.5.1.2.5.9.5 Exceptions/Errors
SCA375 The query operation shall raise the UnknownFileSystemProperties exception when the
given file system property is not recognized.
3.1.3.5.1.3 FileManager
3.1.3.5.1.3.1 Description
Multiple, distributed file systems may be accessed through a file manager. The FileManager
interface, shown in Figure 3-61, appears to be a single file system although the actual file storage

132

SCA Specification Version: 4.0.1
01 October 2012

may span multiple physical file systems. This is called a federated file system. A federated file
system is managed using the mount and unmount operations. Typically, the domain manager or
system initialization software will invoke these operations.
The FileManager inherits the IDL interface of a FileSystem.
3.1.3.5.1.3.2 UML

class FileManager

«interface»
FileSystem

+ SIZE :string = "SIZE" {readOnly}
+ AVAILABLE_SPACE :string = "AVAILABLE_SPACE" {readOnly}
+ CREATED_TIME_ID :string = "CREATED_TIME" {readOnly}
+ MODIFIED_TIME_ID :string = "MODIFIED_TIME" {readOnly}
+ LAST_ACCESS_TIME_ID :string = "LAST_ACCESS_TIME" {readOnly}

+ remove(string) :void
+ copy(string, string) :void
+ exists(string) :boolean
+ list(string) :FileInformationSequence
+ create(string) :File
+ open(string, boolean) :File
+ mkdir(string) :void
+ rmdir(string) :void
+ query(Properties*) :void

«interface»
FileManager

+ mount(string, FileSystem) :void
+ unmount(string) :void
+ getMounts() :MountSequence

Figure 3-61: FileManager Interface UML

3.1.3.5.1.3.3 Types
3.1.3.5.1.3.3.1 MountType
The MountType structure identifies the file systems mounted within the file manager.
struct MountType
{

string mountPoint;
FileSystem fs;

};
3.1.3.5.1.3.3.2 MountSequence
The MountSequence is an unbounded sequence of MountTypes.
typedef sequence <MountType> MountSequence;

133

SCA Specification Version: 4.0.1

3.1.3.5.1.3.3.3 NonExistentMount

01 October 2012

The NonExistentMount exception indicates a mount point does not exist within the file manager.
exception NonExistentMount{};
3.1.3.5.1.3.3.4 MountPointAlreadyExists
The MountPointAlreadyExists exception indicates the mount point is already in use in the file
manager.
exception MountPointAlreadyExists{};
3.1.3.5.1.3.3.5 InvalidFileSystem
The InvalidFileSystem exception indicates the FileSystem is a null (nil) object reference.
exception InvalidFileSystem{};
3.1.3.5.1.3.4 Attributes
N/A
3.1.3.5.1.3.5 Operations
3.1.3.5.1.3.5.1 mount
3.1.3.5.1.3.5.1.1 Brief Rationale
The FileManager interface supports the notion of a federated file system. To create a federated
file system, the mount operation associates a file system with a mount point (a directory name).
3.1.3.5.1.3.5.1.2 Synopsis
void mount (in string mountPoint, in FileSystem file_System)
raises (InvalidFileName, InvalidFileSystem,
MountPointAlreadyExists);
3.1.3.5.1.3.5.1.3 Behavior
SCA376 The mount operation shall associate the specified file system with the mount point
referenced by the input mountPoint parameter. SCA377 A mount point name shall begin with a
"/" (forward slash character). The input mountPoint parameter is a logical directory name for a
file system.
3.1.3.5.1.3.5.1.4 Returns.
This operation does not return any value.
3.1.3.5.1.3.5.1.5 Exceptions/Errors.
SCA461 The mount operation shall raise the CF InvalidFileName exception when the input
mount point does not conform to the file name syntax in section 3.1.3.5.2.2.3.
SCA378 The mount operation shall raise the MountPointAlreadyExists exception when the
mount point already exists in the file manager.
SCA379 The mount operation shall raise the InvalidFileSystem exception when the input
FileSystem is a null object reference.
3.1.3.5.1.3.5.2 unmount
3.1.3.5.1.3.5.2.1 Brief Rationale
Mounted file systems may need to be removed from a file manager.
3.1.3.5.1.3.5.2.2 Synopsis
void unmount (in string mountPoint) raises (NonExistentMount);

134

SCA Specification Version: 4.0.1

3.1.3.5.1.3.5.2.3 Behavior

01 October 2012

SCA380 The unmount operation shall remove a mounted file system from the file manager
whose mounted name matches the input mountPoint name.
3.1.3.5.1.3.5.2.4 Returns
This operation does not return any value.
3.1.3.5.1.3.5.2.5 Exceptions/Errors
SCA381 The unmount operation shall raise the NonExistentMount exception when the mount
point does not exist.
3.1.3.5.1.3.5.3 getMounts
3.1.3.5.1.3.5.3.1 Brief Rationale
File management user interfaces may need to list a file manager's mounted file systems.
3.1.3.5.1.3.5.3.2 Synopsis
MountSequence getMounts();
3.1.3.5.1.3.5.3.3 Behavior
The getMounts operation returns a MountSequence that describes the mounted file systems.
3.1.3.5.1.3.5.3.4 Returns
SCA382 The getMounts operation shall return a MountSequence that contains the file systems
mounted within the file manager.
3.1.3.5.1.3.5.3.5 Exceptions/Errors
This operation does not raise any exceptions.
3.1.3.5.1.3.5.4 query
3.1.3.5.1.3.5.4.1 Brief Rationale
The inherited query operation provides the ability to retrieve the same information for a set of
file systems.
3.1.3.5.1.3.5.4.2 Synopsis
void query (inout Properties fileSystemProperties) raises
(UnknownFileSystemProperties);
3.1.3.5.1.3.5.4.3 Behavior
SCA383 The query operation shall return the combined mounted file systems information to the
calling client based upon the given input fileSystemProperties' ID elements. SCA441 As a
minimum, the query operation shall support the following input fileSystemProperties ID
elements:

1. SIZE - a property item ID value of "SIZE" causes the query operation to return the
combined total size of all the mounted file system as an unsigned long long property
value.

2. AVAILABLE_SPACE - a property item ID value of "AVAILABLE_SPACE" causes the
query operation to return the combined total available space (in octets) of all the mounted
file system as unsigned long long property value.

3.1.3.5.1.3.5.4.4 Returns
This operation does not return any value.

135

SCA Specification Version: 4.0.1

3.1.3.5.1.3.5.4.5 Exceptions/Errors

01 October 2012

SCA384 The query operation shall raise the UnknownFileSystemProperties exception when the
input fileSystemProperties parameter contains an invalid property ID element.
3.1.3.5.2 Components
Framework Services Components provide general software capabilities (not directly associated
with logical devices) that will be utilized by platform developers.
The File Services (FileComponent, FileSystemComponent and FileManagerComponent) consist
of interfaces and components that are used to manage and access a potentially distributed file
system. The File Services are used for installation and removal of application and artifact files
within the system, and for loading and unloading those files on the various processors that they
execute upon.
3.1.3.5.2.1 FileComponent
3.1.3.5.2.1.1 Description
The FileComponent provides the ability to read and write files residing within a file system.

cmp FileComponent

«interface»

CF::File

+ fileName :string
+ filePointer :unsigned long

+ read(OctetSequence*, unsigned long) :void
+ write(OctetSequence) :void
+ sizeOf() :unsigned long
+ close() :void
+ setFilePointer(unsigned long) :void

FileComponent

«proxies»

+physicalFile «POSIX File»
File

Figure 3-62: FileComponent UML

3.1.3.5.2.1.2 Associations

• physicalFile: A FileComponent is the logical proxy for a physical file that resides on the
actual file system.

3.1.3.5.2.1.3 Semantics
SCA397 A FileComponent's filePointer attribute shall be set to the beginning of the file when a
FileComponent is opened for read only or created for the first time. SCA398 A FileComponent's
filePointer attribute shall be set at the end of the file when a FileComponent already exists and is
opened for write.

136

SCA Specification Version: 4.0.1

3.1.3.5.2.1.4 Constraints
SCA399 A FileComponent shall realize the File interface.
3.1.3.5.2.2 FileSystemComponent
3.1.3.5.2.2.1 Description

01 October 2012

A FileSystemComponent realizes the FileSystem interface, may be associated with a
FileManagerComponent and consists of many FileComponents. The FileSystemComponent
provides a container for managing the lifespan and organization of FileComponents.

cmp FileSystemComponent

«interface»

CF::FileSystem

+ SIZE :string = "SIZE" {readOnly}
+ AVAILABLE_SPACE :string = "AVAILABLE_SPACE" {readOnly}
+ CREAT ED_T IME_ID :string = "CREAT ED_T IME" {readOnly}
+ MODIFIED_T IME_ID :string = "MODIFIED_T IME" {readOnly}
+ LAST _ACCESS_T IME_ID :string = "LAST _ACCESS_T IME" {readOnly}

+ remove(string) :void
+ copy(string, string) :void
+ exists(string) :boolean
+ list(string) :FileInformationSequence
+ create(string) :File
+ open(string, boolean) :File
+ mkdir(string) :void
+ rmdir(string) :void
+ query(Properties*) :void

FileSystemComponent

«manages»

+fileComponent

0..*

FileComponent

Figure 3-63: FileSystemComponent UML

3.1.3.5.2.2.2 Associations

• fileComponent: A FileSystemComponent manages the creation, deletion and
manipulation of FileComponents within a file system.

3.1.3.5.2.2.3 Semantics
The files stored on a file system may be plain files or directories. SCA400 Valid characters for a
FileSystemComponent file name and file absolute pathname shall adhere to POSIX compliant
file naming conventions. Valid characters for a filename or directory name are the 62
alphanumeric characters (Upper, and lowercase letters and the numbers 0 to 9) in addition to the
"." (period), "_" (underscore) and "-" (hyphen) characters. The filenames "." ("dot") and ".."
("dot-dot") are invalid in the context of a file system. Valid pathnames include the "/" (forward

137

SCA Specification Version: 4.0.1

01 October 2012
slash) character in addition to the valid filename characters. A valid pathname may consist of a
single filename.
3.1.3.5.2.2.4 Constraints
SCA401 A FileSystemComponent shall realize the FileSystem interface. SCA402 Valid
individual filenames and directory names for a FileSystemComponent shall be 40 characters or
less. SCA403 A valid pathname for a FileSystemComponent shall not exceed 1024 characters.
3.1.3.5.2.3 FileManagerComponent
3.1.3.5.2.3.1 Description
The FileManagerComponent extends a FileSystem Component by adding the capability to allow
multiple, distributed FileSystemComponents to be accessed through a FileManagerComponent.
The FileManagerComponent appears as a single file system although the actual file storage may
span multiple physical file systems. A FileManagerComponent implements the inherited
FileSystem operations defined in section 3.1.3.5.1.2 for each mounted FileSystemComponent.

cmp FileManagerComponent

«interface»

CF::FileManager

+ getMounts() :MountSequence
+ mount(string, FileSystem) :void
+ unmount(string) :void

FileSystemComponent

* +fileSystem

«manages»

FileManagerComponent
*

Figure 3-64: FileManagerComponent UML

3.1.3.5.2.3.2 Associations

• fileSystem: A FileManagerComponent manages the mounting and un-mounting of its
contained FileSystemComponent(s)

3.1.3.5.2.3.3 Semantics
Based upon the pathname of a directory or file and the set of mounted file systems, the file
manager delegates the FileSystemComponent operations to the appropriate file system. For
example, if a file system is mounted at "/ppc2", an open operation for a file called
"/ppc2/profile.xml" would be delegated to the mounted file system. The mounted file system
will be given the filename relative to it. In this example the FileSystemComponent's open
operation would receive "/profile.xml" as the fileName argument.
Another example of this concept is shown using the copy operation. When a client invokes the
copy operation, the FileManagerComponent delegates the operation to the appropriate

138

SCA Specification Version: 4.0.1

01 October 2012
FileSystemComponents (based upon supplied pathnames) thereby allowing copy of files between
FileSystemComponents.
If a client does not need to mount and unmount FileSystemComponents, it may treat the
FileManagerComponent as a FileSystemComponent by widening a FileManager interface
reference to a FileSystem interface reference (because the FileManager interface is derived from
a FileSystem interface).
The FileSystem operations ensure the filename/directory arguments given are absolute
pathnames relative to a mounted file system. SCA404 The FileSystem operations realized by a
FileManagerComponent shall remove the name of the mounted file system from input pathnames
before passing the pathnames to any operation on a mounted file system. SCA405 A
FileManagerComponent shall propagate exceptions raised by a mounted file system. SCA406 A
FileManagerComponent shall use the FileSystem operations of the FileSystemComponent whose
associated mount point exactly matches the input fileName parameter to the lowest matching
subdirectory.
The system may support multiple FileSystemComponents. Some file systems correspond
directly to a physical file system within the system. A FileManagerComponent supports a
federated, or distributed, file system that may span multiple FileSystemComponents. From the
client perspective, the FileManagerComponent may be used just like any other
FileSystemComponent since the FileManagerComponent inherits all the FileSystem operations.
3.1.3.5.2.3.4 Constraints
SCA408 A FileManagerComponent shall realize the FileManager interface.
SCA409 A FileManagerComponent instantiation shall fulfill the FileSystemComponent
component requirements.
3.1.3.5.2.4 PlatformComponent
3.1.3.5.2.4.1 Description
A PlatformComponent is an abstract component utilized by the SCA Base Device Components
and Framework Services Components.

cmp PlatformComponent

PlatformComponent

Figure 3-65: PlatformComponent UML

3.1.3.5.2.4.2 Associations
N/A
3.1.3.5.2.4.3 Semantics
A PlatformComponent is not limited to using the services designated as mandatory by Appendix
B and thus may use any service provided by the OE.
3.1.3.5.2.4.4 Constraints
N/A

139

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.5.2.5 PlatformComponentFactoryComponent
3.1.3.5.2.5.1 Description
A platform component factory is an optional mechanism that may be used to create device or
service components.

cmp PlatformComponentFactoryComponent

PlatformComponent ComponentFactoryComponent

PlatformComponentFactoryComponent

Figure 3-66: PlatformComponentFactoryComponent UML

3.1.3.5.2.5.2 Associations
N/A
3.1.3.5.2.5.3 Semantics
A PlatformComponentFactoryComponent is used to create a service or device component. A
DeviceManagerComponent is not required to use platform component factories to create devices
and services. A software profile specifies which PlatformComponentFactoryComponents are to
be used by the DeviceManagerComponent.
SCA412 A PlatformComponentFactoryComponent shall register with the launching
DeviceManagerComponent via the ComponentRegistry::registerComponent operation.
3.1.3.5.2.5.4 Constraints
SCA527 A PlatformComponentFactoryComponent instantiation shall fulfill the
ComponentFactoryComponent requirements.
A PlatformComponentFactoryComponent instantiation is a PlatformComponent.
SCA416 The PlatformComponentFactoryComponent shall only launch ComponentBaseDevices
or ServiceComponents.
3.1.3.5.2.6 ServiceComponent
3.1.3.5.2.6.1 Description
A ServiceComponent is a platform software component that can implement any interface(s) and
does not manage hardware. A ServiceComponent usually comes into existence at platform
startup. The SCA identifies its services in section 3.1.2, defining some such as event and
lightweight log, which are known as the SCA Services. ServiceComponents may use any
operating system APIs provided by the OE and as such are not restricted to using only the APIs

140

SCA Specification Version: 4.0.1
01 October 2012

as specified in Appendix B. ServiceComponents that do not implement the SCA Base
Application interfaces are known as non_CF_Service_Components.

Figure 3-67: ServiceComponent UML

3.1.3.5.2.6.2 Associations

• domainProfile: A ServiceComponent has a SPD and zero to many other domain profile
files.

• registrar: A ServiceComponent registers with a DeviceManagerComponent via its
associated ComponentRegistry instance.

3.1.3.5.2.6.3 Semantics
ServiceComponents are typically used by AssemblyComponents but there is nothing restricting
platform services being utilized by any type of PlatformComponent (e.g.
ComponentBaseDevices).
SCA314 All ServiceComponents started up by a DeviceManagerComponent shall have a handler
registered for the POSIX SIGQUIT signal.
A ServiceComponent may realize an interface directly without ports, similar to an SCA service,
or have ports. SCA316 A ServiceComponent shall register with the launching
DeviceManagerComponent via the ComponentRegistry::registerComponent operation. SCA317
The values associated with the parameters (SERVICE_NAME) as described in 3.1.3.3.2.5.3 shall
be used to set the platform service's ComponentIdentifier interface identifier attribute.
Constraints
A ServiceComponent instantiation is a PlatformComponent. SCA460 Each ServiceComponent
shall have an SPD as described in section 3.1.3.6.4. The ServiceComponent abstraction can
represent non_CF_Service_Components implemented by a third party (e.g. commercial)
provider. In those cases the implementation oriented ServiceComponent requirements are not
applicable.

141

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.5.2.7 CF_ServiceComponent
3.1.3.5.2.7.1 Description
A CF_ServiceComponent extends the ServiceComponent by adding support for the SCA Base
Application interfaces and is known as a CF_Service_Component.

cmp CF_Serv iceComponent

ResourceComponent Serv iceComponent

CF_Serv iceComponent

Figure 3-68: CF_ServiceComponent UML

3.1.3.5.2.7.2 Associations
N/A
3.1.3.5.2.7.3 Semantics
N/A.
3.1.3.5.2.7.4 Constraints
SCA529 A CF_ServiceComponent shall fulfill the ResourceComponent requirements. SCA530
A CF_ServiceComponent shall fulfill the ServiceComponent requirements.

3.1.3.6 Domain Profile

The hardware devices and software components that make up an SCA system domain are
described by a set of files that are collectively referred to as a Domain Profile. These files
describe the identity, capabilities, properties, inter-dependencies, and location of the hardware
devices and software components that make up the system. All of the descriptive data about a
system is expressed in the descriptor vocabulary.
The types of descriptor files that are used to describe a system's hardware and software assets are
depicted in Figure 3-69. The descriptor vocabulary within each of these files describes a distinct
aspect of the hardware and software assets. The collection of descriptor files which are
associated with a particular software component is referred to as that component's software
profile. The contents of a profile depends on the component being described, although every
profile contains a SPD - all profiles for components contain a SCD. A software profile for an
application contains a SAD, the device manager profile contains a Device Configuration
Descriptor (DCD), and the domain manager software profile contains a DMD.

142

SCA Specification Version: 4.0.1
01 October 2012

Properties Descriptor

Platform Deployment Descriptor

SCA463 Domain Profile files shall be compliant to the descriptor files provided in Appendix D.

Domain Profile

0..n 1 0..n

Device Configuration Descriptor Domain Manager Configuration Descriptor Software Assembly Descriptor

1..n

{1..n}

0..n

0..n 1 0..n 0..1

Device Package Descriptor Software Package Descriptor Application Deployment Descriptor

0..1

Properties Descriptor

0..1

Software Component Descriptor

0..1

0..1
0..1

Properties Descriptor

Figure 3-69: Relationship of Domain Profile Descriptor File Types
3.1.3.6.1 Software Package Descriptor (SPD)
An SPD identifies a software component implementation(s). General information about a
software package, such as the name, author, property file, and implementation code information
and hardware and/or software dependencies are contained in an SPD file.
3.1.3.6.2 Software Component Descriptor (SCD)
An SCD contains information about a specific SCA software component. An SCD file contains
information about the interfaces that a component provides and/or uses.
3.1.3.6.3 Software Assembly Descriptor (SAD)
An SAD contains information about the components that make up an application. The
application factory uses this information when creating an application.

143

SCA Specification Version: 4.0.1
01 October 2012

3.1.3.6.4 Properties Descriptor (PRF)
A PRF contains information about the properties applicable to a software package or a device
package. A PRF contains information about the properties of a component such as
configuration, test, execute, and allocation types.
3.1.3.6.5 Device Package Descriptor (DPD)
A DPD identifies a class of a device. A DPD also has properties that define specific properties
(capacity, serial number, etc.) for this class of device. The use of the DPD is optional within a
system, however if it is used the reference to this file will be made from the DCD file.
3.1.3.6.6 Device Configuration Descriptor (DCD)
A DCD contains information about the devices associated with a device manager, how to find
the domain manager, and the configuration information for the components that it deploys.
3.1.3.6.7 Domain Manager Configuration Descriptor (DMD)
A DMD contains configuration information for the domain manager.
3.1.3.6.8 Platform Deployment Descriptor (PDD)
A PDD identifies the logical relationships between platform resources within the OE's registered
services and devices. The use of the PDD is optional within a system, however if it is used the
reference to this file will be made from the DMD file. A PDD file may be used to exert a greater
degree of control over the application deployment process. The file contains information that
describes the composition (i.e. included services and devices) of virtual channels within a
platform domain.
3.1.3.6.9 Application Deployment Descriptor (ADD)
An ADD contains precedence lists that are used for deploying application instances within a
platform domain. The use of the ADD is optional within a system, however if it is used the
reference to this file will be made from a SAD file. An ADD file contains application names and
references the virtual channels defined in the PDD file.

144

SCA Specification Version: 4.0.1
01 October 2012

4 CONFORMANCE
SCA conformance is achieved when a product successfully implements all applicable
requirements identified within the scope of its declared conformance statement. Language used
to identify requirements within this specification is defined in section 1.2.2. Requirements stated
in this specification take precedence when they are in conflict with other existing
standards/specifications, cited or not cited.
The JTNC is the Specification Authority (SA) is responsible for developing, maintaining,
evolving and interpreting the standard.

4.1 CONFORMANCE CRITERIA
SCA conformance language is referenced in several parts of the specification:

• The SCA technology independent model representation (i.e. Platform Independent
Model) is summarized in this specification.

• The SCA technology independent model comprises a set of interfaces and
component definitions that are appropriate for building SCA products (e.g.
applications, devices and services). SCA products may be realized using a variety
of technologies (e.g., CORBA, JAVA, MHAL Communications Service, etc.).

• The SCA technology specific model representations (i.e. Platform Specific Models) are
defined in the corresponding appendix.

• The SCA technology specific models comprise of technology specific mappings,
transformations, and model representations used in the realization of the
technology on a specific platform.

SCA Conformance can be achieved using multiple methods. Therefore, several separate
conformance points are defined below.

4.1.1 Conformance on the Part of an SCA Product
The interfaces and components of this specification are not required to be used solely for a
particular platform or application. An SCA product uses the interfaces and component
definitions that meet their needs.
Conformance for an SCA Product is at the level of usage as follows:

• A technology independent representation of an interface defined in this specification
needs to be conformant with an identified Profile or collection of UOFs as described in
Appendix F.

• A technology specific representation (no matter what language) of an interface defined in
this specification needs to be conformant (signature equivalent) to the technology
independent interface definition as described in this specification.

• A technology specific implementation (no matter what language) of a component defined
in this specification needs to be conformant to both the component technology
independent representation (e.g. semantics, ports, interfaces, properties) and any
associated technology specific semantics and interface definitions as described in this
specification.

For example, a component is considered to be conformant to the Component Framework
CORBA/XML platform if it does all of the following:

145

SCA Specification Version: 4.0.1
01 October 2012

• Realizes the OMG IDL defined interfaces referred to by the SCA CORBA component
representation

• Implements XML Domain Profile file serialization in accordance with the format defined
in Appendix D.

• Implements the behavioral requirements identified by the component stereotype's
technology independent representation.

Note that the semantics for an interface identified in the component technology independent
representation are defined by the interface signature, associations and semantics of the
corresponding interface in the SCA technology independent representation.

4.1.2 Conformance on the Part of an SCA OE component
The SCA OE contains the requirements of the operating system, transfer mechanism, and the CF
interfaces and operations. Conformance of the CF elements is governed by the SCA Product
rules defined in Section 2.2; however the other OE elements (i.e. those without components or
interfaces defined within the main body of the specification) are subject to a unique conformance
rule.
Conformance for an OE element (without a corresponding component or interface definition) is
at the level of usage as follows:

• Realizes the applicable interfaces associated with its OE capability, or the interfaces
associated with a documented profile of that capability.

• Implements the applicable behavioral requirements defined within its capability
description (i.e. the corresponding SCA Appendix).

Thus, an OE implementation as defined in this specification could provide support for an AEP
POSIX layer per Appendix B; and provide distributed communications in accordance with the
CORBA (full profile) per Appendix E.
The DomainManagerComponent indicates the levels of Units of Functionality conformance by
its DMD attributes.
The DeviceManagerComponent indicates the levels of Units of Functionality conformance by its
DCD attributes

4.2 SAMPLE CONFORMANCE STATEMENTS
An SCA product can be identified as being conformant to a specific version of the SCA and the
specific technology that the product realizes.

• "Product A is an SCA conformant waveform for the CORBA/XML platform."
• "Product B is an SCA conformant Audio Device for the J2EE/XML platform."
• "Product C is an SCA conformant Core Framework for the CORBA/XML platform."
• "Product D is an SCA conformant Operating Environment containing a lightweight AEP

conforming POSIX layer and a CORBA (full profile) transfer mechanism."

146

glbick
Comment on Text
Added conformance statements for Manager Components

	SOFTWARE COMMUNICATIONS ARCHITECTURE SPECIFICATION
	REVISION SUMMARY
	TABLE OF CONTENTS
	APPENDIX A: GLOSSARY

	LIST OF FIGURES
	FOREWORD
	1 INTRODUCTION
	1.1 SCOPE
	1.2 DOCUMENT CONVENTIONS AND TERMINOLOGY
	1.2.1 File and Directory Nomenclature
	1.2.2 Requirements Language
	1.2.3 Core Framework Interface, Component and Operation Identification

	1.3 DOCUMENT CONTENT
	Section 1,

	1.4 NORMATIVE REFERENCES
	1.5 INFORMATIVE REFERENCES

	2 OVERVIEW
	2.1 ARCHITECTURE DEFINITION METHODOLOGY
	2.1.1 Component and Interface Definitions
	2.1.2 Component Implementation
	SCA-Conforming Product
	Figure 2-1: Relationship between Component Definition and Implementation
	2.2.1 System Architecture
	Composition of Radio System
	Figure 2-2: Composition of a SCA System

	2.2.2 Application Architecture
	Legend
	Figure 2-4: Application Use of OE
	2.2.2.1 Reference Model
	Figure 2-5: Conceptual Model of Resources

	2.2.3 Platform Devices and Services Architecture
	2.2.4 Core Framework Control Architecture
	2.2.5 Structure
	Figure 2-6: SCA Creation and Management Hierarchy

	2.2.6 Domain Profile
	Figure 2-7: Relationship of Domain Profile Descriptor File Types

	3 SCA PLATFORM INDEPENDENT MODEL (PIM)
	3.1 OPERATING ENVIRONMENT
	3.1.1 Operating System
	Figure 3-1: Notional Relationship of OE and Application to an SCA AEP

	3.1.2 Transfer Mechanism & Services
	3.1.2.1 Log Service
	3.1.2.2 Event Service and Standard Events
	3.1.2.2.1 Event Service
	3.1.2.2.2 StandardEvent Module
	3.1.2.2.3 Types
	3.1.2.3 Additional Services

	3.1.3 Core Framework
	Figure 3-2: Core Framework IDL Relationships
	3.1.3.1 Common Elements
	3.1.3.1.1 Interfaces
	3.1.3.1.2 Components
	Figure 3-5: ComponentBase UML
	Figure 3-6: ComponentFactoryComponent UML
	Figure 3-7: ComponentManagerComponent UML
	3.1.3.2 Base Application
	3.1.3.2.1 Interfaces
	3.1.3.2.2 Components
	Figure 3-15: ResourceComponent UML
	Figure 3-16: ApplicationResourceComponent UML
	Figure 3-17: AssemblyControllerComponent UML
	Figure 3-18: Application Component UML
	Figure 3-19: ApplicationComponentFactoryComponent UML
	3.1.3.3 Framework Control
	3.1.3.3.1 Interfaces
	Figure 3-34: AssemblyComponent UML
	Figure 3-35: ApplicationManagerComponent UML
	Figure 3-36: ApplicationFactoryComponent UML
	Figure 3-38: DomainManagerComponent UML
	Figure 3-39: DeviceManagerComponent UML
	Figure 3-40: Device Manager Startup Scenario
	3.1.3.4 Base Device
	3.1.3.4.1 Interfaces
	Figure 3-42: Release Child Device Scenario
	Figure 3-43: Release Parent Device Scenario
	3.1.3.4.2 Components
	Figure 3-53: ComponentBaseDevice UML
	Figure 3-55: DeviceComponent UML
	Figure 3-56: LoadableDeviceComponent UML
	Figure 3-57: ExecutableDeviceComponent UML
	Figure 3-58: AggregateDeviceComponent UML
	3.1.3.5 Framework Services
	Figure 3-59: File Interface UML
	3.1.3.5.2 Components
	Figure 3-62: FileComponent UML
	Figure 3-63: FileSystemComponent UML
	Figure 3-64: FileManagerComponent UML
	Figure 3-65: PlatformComponent UML
	Figure 3-66: PlatformComponentFactoryComponent UML
	Figure 3-67: ServiceComponent UML
	Figure 3-68: CF_ServiceComponent UML
	3.1.3.6 Domain Profile
	3.1.3.6.1 Software Package Descriptor (SPD)
	3.1.3.6.2 Software Component Descriptor (SCD)
	3.1.3.6.3 Software Assembly Descriptor (SAD)
	3.1.3.6.4 Properties Descriptor (PRF)
	3.1.3.6.5 Device Package Descriptor (DPD)
	3.1.3.6.6 Device Configuration Descriptor (DCD)
	3.1.3.6.7 Domain Manager Configuration Descriptor (DMD)
	3.1.3.6.8 Platform Deployment Descriptor (PDD)
	3.1.3.6.9 Application Deployment Descriptor (ADD)

	4 CONFORMANCE
	4.1 CONFORMANCE CRITERIA
	4.1.1 Conformance on the Part of an SCA Product
	4.1.2 Conformance on the Part of an SCA OE component

	4.2 SAMPLE CONFORMANCE STATEMENTS

